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Abstract— Diffusion MRI tractography is a noninvasive method
to estimate the structural connectivity of white matter (WM)
bundles (tracts) in the human brain, which can help us
understand brain function and neurodegenerative diseases.
Existing techniques for analyzing WM microstructure along the
length of bundles often require registering all individuals into a
common space that may ignore potentially key differences in the
shape and alignment of the tracts. We propose the Medial
Tractography Analysis (MeTA) method to reduce partial
voluming and microstructural heterogeneity in dMRI metrics
while retaining bundle shape and capturing the regional
variation within bundles. We performed reliability, compatibility,
and disease-based validations. MeTA showed moderate to good
overall overlap for most bundles in a test-retest dataset and
preserved regional compatibility when applied to a dataset of
subjects scanned with both high and low angular resolution
protocols. Diffusion tensor imaging (DTI) metrics along the
length of MeTA bundles had strong associations with cognitive
impairment in ADNI. MeTA may be a reliable approach to
identify regional abnormalities in clinical populations across
multiple diffusion acquisitions.

Keywords—Diffusion MRI, tractography, white matter bundle,
medial volume, along-tract analysis

I. INTRODUCTION
Diffusion-weighted magnetic resonance imaging (dMRI) is

a noninvasive technique that can be used to visualize the white
matter (WM) in the brain and quantify its microstructural
properties. Whole brain “tractograms” can be generated and
segmented into specific WM tracts or pathways, to study and
reveal normal variations and abnormal alterations with disease
progression [1].

Tracts may vary spatially along their length with different
segments being more susceptible to disease. To chart localized
variations, methods for performing population-based analyses
of microstructural WM along the bundle have been
established. One method uses cubic B-splines to
reparameterize the streamlines of the bundle into N (100)
points equally spaced along their length [2] and maps them
onto a single curve. Then, the average of diffusion tensor
imaging (DTI) metrics are output for each point along the tract
instead of a single scalar value across the entire tract. Another
method uses QuickBundles [3] to generate a centroid with 100
points [4] segmented in a common space and determines

correspondence between subjects using a distance metric. The
first method is agnostic to shape differences between subjects,
while the second is dependent upon registration to a common
space. Full streamline based analyses are computationally
intensive when large numbers of streamlines are generated and
may require registering streamlines across subjects into a
common space for group analysis [5].

We have developed a novel method, Medial Tractography
Analysis (MeTA), that aims to reduce microstructural
heterogeneity and variability of dMRI metrics within bundles,
and take into account correspondence of regional along-tract
comparisons between subjects across acquisition protocols, by
focusing on the core of the bundle. MeTA builds on tract
segmentation tools to extract the core volume of the bundle
instead of the medial surface [6]–[8]. We propose a framework
for expanding MeTA by segmenting the core WM tracts along
the curve and establishing correspondence across subjects in
their native spaces, even when bundles across subjects have
different lengths and shapes. This process does not require all
subjects’ data to be registered into a common space, which can
be computationally expensive and prone to misregistrations.
We used test-retest data from the WU-Minn Human
Connectome Project (HCP), a compatibility dataset from the
Queensland Twin IMaging (QTIM) study, and clinical
multi-protocol dataset from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI3) to validate our method
[9]–[11]. We show that we can extract reliable DTI metrics
across different segments, that our MeTA-based along-tract
regional estimates are more compatible than full bundle
analytics. We found that we could detect more robust
associations with clinical measures than using the full bundle,
all in native space, without computationally intensive
bundle-level non-linear registration.

II. METHODS

A. Medial Surface and Core Extraction
A continuous medial representation (CM-Rep) m is a

parametrized surface model with a radius scalar field (R)
attached to the surface [7]. To reconstruct the boundary of a
3D object X, a maximum inscribed ball (MIB) of radius R is
placed on each point of the continuous medial surface (m).
The object X can be described as X±(u), where X+ and X- are
on opposite sides of a parametrized surfacem(u), where u is a
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surface parameter of m. The points of tangency between X and
the MIB of m with radius R can be considered as X±.

(1)𝑋±(𝑢) = 𝑚(𝑢) + 𝑅(𝑢) 𝑈±(𝑢) 
The unit outward normal vectors on both directions of X are
denoted by in the equation.𝑈±

(2) 𝑈± =  − ⛛
𝑚

𝑅 ±  1 − ‖⛛
𝑚

𝑅‖2  𝑁
𝑚

where denotes the unit normal to the medial surface (m)𝑁
𝑚

and is the Riemannian gradient of R on .⛛
𝑚

𝑅 𝑚

To compute the central 25% ‘core’ of the 3D volumetric
shape, we used the medial surface (m) and boundary mesh X
[6]. This involved computing the 37.5% and 62.5% surfaces
using ray tracing methods (12.5% around the medial 50%
surface) [12]. We determined the normal on the vertex points
of the medial surface (m) and traveled along the surface
normal in both directions to reach the outer boundary mesh𝑋±

points. We refer to this as the MeTA_25% ‘core’.

We used a KD-Tree [13] to determine the distance between
each individual vertex point on the medial surface m and its
nearest vertex point on the outer boundary mesh , taking𝑋±

into account the normal axis in both directions. By doing so,
we were able to calculate the shortest distance
(thickness/depth) from the vertex point on the medial surface
to the boundary mesh. The newly computed points on both
sides of the medial surface were used to obtain the sub-volume
from the original boundary.

B. Bundle Core Parcellation
To achieve correspondence between subjects, we generated

a centroid along the length of the template bundle with 14
points to get 15 segments along the length of the bundle,
where 15 was chosen arbitrarily as the number of segments,
which serves as a reference for comparison across subjects
[14]. We generated the subject’s centroid for each bundle with
100 points using QuickBundles [3] and used dynamic time
warping (DTW) to get the corresponding points between the
subject and template bundles, as shown in Figure 1. Given
two sequences of possibly different lengths, DTW calculates
the optimal correspondence between the two sets of points by
minimizing the Euclidean distance between the two sequences
under all possible sets of alignments [15]. DTW will match
each point in the model's centroid with more than one point in
the subject's centroid, and we therefore pick the midpoint of
all possible matches and return the corresponding 14 points in
the subject's centroid that will be used in the parcellation of
MeTA_25% ‘core’.

Using the subject centroid points, we divided the full 3D
binary mask of the bundle (‘all’) into multiple segments, as
illustrated in Figure 1. We assigned each voxel of the entire
bundle to the appropriate segment based on its relative
position to the DTW points, as determined by using dot
product calculations between a vector of two consecutive
corresponding points and a vector of the current corresponding
point and all other points. For ambiguous voxels with
unassigned or multiply assigned segments, we reassigned

these voxels by identifying the segment whose DTW point is
closest according to the Euclidean distance.

Fig. 1. Bundle core parcellation workflow. While the CM-rep surface is
used for representing the bundles, the centroid curve is used for alignment. A
centroid (in red color) is generated from the segmented bundle of the subject
(in blue color) containing 100 points and the template bundle (in green color)
with 14 points. DTW was used to get corresponding points by aligning these
two centroids. The parcel bundle core volume was obtained by using
corresponding points.

C. Datasets

In our reproducibility and compatibility analyses (Table I),
we used test-retest data from the HCP and two acquisitions
from the QTIM datasets, the latter of which comes in two
protocols collected at 4 tesla: low and high angular resolution
(LARDI and HARDI, respectively). We downloaded
preprocessed dMRI data from the HCP. The QTIM datasets
were previously corrected for eddy current and motion
artifacts using FSL’s eddy_correct, and then corrected for EPI
distortion by registering to a downsampled version of the
subject’s T1-weighted image in MNI space; both protocols
were resampled to (2mm)3 in the process. For our clinical
application, we also applied our method to the ADNI3 dataset.
The ADNI3 dataset was denoised using Local PCA [16],
deGibbs [17], and corrected for eddy current and motion
artifacts (using FSL eddy [18]).
TABLE I. DEMOGRAPHIC DETAILS FOR RELIABILITY AND COMPATIBILITY DATASETS.

Dataset Age
range N (F) Voxel size (mm3) N (Volume) b-value

(mm2/s)

HCP 22-35 32 (23) 1.25 x 1.25 x 1.25 96, 96, 96
(90 non b0)

1000, 2000,
3000

QTIM (LARDI)
24-30 311 (189)

1.8 x 1.8 x 5 30
(27 non b0) 1146

QTIM (HARDI) 1.79 x 1.79 x 2 105
(94 non b0) 1159

We extracted the fiber orientation distributions (iFOD2)
model for the whole brain using a multi-tissue constrained
spherical deconvolution approach [19]. Then, we generated
probabilistic streamlines tractography for the whole brain
using the probabilistic iFOD2 method [20].

Using RecoBundles [8], which automatically groups
streamlines into bundles using priors [14], major WM bundles
were extracted from tractograms. Here, we focus on the
arcuate fasciculus (AF), inferior fronto-occipital fasciculus
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(IFOF), corticospinal tract (CST), all of which are bilateral
and include both left and right sides, and the corpus callosum
major (CC_ForcepsMajor). For each extracted bundle, we
used CM-Rep to calculate the medial surface [7], and then
extracted the MeTA_25% volume [6].

D. Reliability and Compatibility Statistics

First, we computed the Dice score for each of the four
tracts (AF, IFOF, CST, CC_ForcepsMajor) as a general
measure of volume similarity. The Dice overlap coefficient is
a measure of the similarity between two datasets and is
defined as two times the intersection of the two datasets
divided by the sum of the volumes of each dataset. This was
calculated in the fully segmented tract using RecoBundles
(‘all’, i.e., 100%), MeTA_25% core and 15 segments along the
length of core volume to determine the reproducibility of our
parcellation workflow. Moreover, we calculated the intraclass
correlation (ICC) of the FA measures using the psych library
in R (https://cran.r-project.org/package=psych) to evaluate the
test-retest reliability for HCP. We used the mean of k raters of
ICC2 to eliminate the mean difference between scan sessions
and take into account the random effect [21].

(3)𝐼𝐶𝐶2 =  𝐵𝑀𝑆 − 𝐸𝑀𝑆
𝐵𝑀𝑆 + (𝑘−1) 𝐸𝑀𝑆 +𝑘 (𝐽𝑀𝑆 − 𝐸𝑀𝑆)/𝑛'

where BMS stands for between-targets mean square (subjects),
EMS is the residual mean square, JMS is the between-judges
(scan sessions at HCP) mean square, k is the number of judges
rating each target, and n' is the number of targets (subjects).

We evaluated the compatibility between the two different
protocols (LARDI and HARDI) of the QTIM dataset using
ICC3.

(4)𝐼𝐶𝐶3 =  𝐵𝑀𝑆 − 𝐸𝑀𝑆
𝐵𝑀𝑆 + (𝑘−1) 𝐸𝑀𝑆

E. Clinical Dataset Application

Using MeTA, we sought to find tracts and subregions
associated with cognitive impairment. In ADNI3 (Table II),
we evaluated the average DTI FA and MD bundle ('all',
MeTA_25% ‘core’, and 15 MeTA_25% segments)
associations with 1) clinical impairment in participants with
mild cognitive impairment (MCI) or Alzheimer's disease (AD)
compared to cognitively normal (CN) individuals; 2) Clinical
Dementia Rating Scale Sum of Boxes (CDR-SB); and 3) tau
positivity indexed with AV-1451 positron emission
tomography in temporal lobe SUVRs [22]. In addition to the
AF, IFOF, CST, and CC_ForcepsMajor, we evaluated the
parahippocampal cingulum (C_PH), which is highly impacted
in AD [11]. We applied RecoBundles [8] to segment the C_PH
from the ADNI3 data. In linear mixed models, age and sex
covariates were modeled as fixed effects, while protocol
(Table II) was modeled as a random effect. We corrected for
multiple comparisons across 153 tests: 9 bundles (AF_L,
AF_R, CST_L, CST_R, IFOF_L, IFOF_R, CPH_L, CPH_R,
CC_ForcepsMajor) and 17 regions (the bundle 'all',
MeTA_25% ‘core’, and the 15 MeTA_25% segments) using
the false discovery rate (FDR) procedure (q=0.05).

TABLE II. DEMOGRAPHIC AND CLINICAL MEASURES FOR PARTICIPANTS IN THE
ADNI3 DATASET, SPLIT BY DMRI PROTOCOL.

III. RESULTS

A. Bundle Overlap, Microstructure Reliability and
Compatibility
The results of the Dice overlap coefficient for the HCP

dataset, including the full bundle ('all'), MeTA_25% (‘core’),
and 15 segments along MeTA_25% are shown in Figure 2.
Most labels indicate moderate-to-good overall overlap for
most bundles in the HCP dataset. The QTIM dataset in Figure
3 shows a lower Dice score across the full bundle and
MeTA_25% of all WM pathways. The beginning and ending
of each bundle tend to have lower scores, while the middle
segments have higher Dice scores. In QTIM, the CST
segments 1 and 2 have a Dice score of zero due to the different
fields of view between the HARDI and LARDI acquisition
protocols. This may be expected given the large difference in
slice thickness.

Fig 2. The Dice overlap coefficient for test-retest data from the HCP dataset is
shown for bundles of (AF, IFOF, CST) across the left (in red) and right (in
blue), as well as the Corpus Callosum Major tract (in yellow), for the full
bundle ('all'), MeTA_25% (‘core’), and 15 MeTA_25% segments.
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Fig 3. Dice scores for bundles of (AF, IFOF, CST) are shown on the left (in
red) and right (in blue), as well as the Corpus Callosum Major tract (in
yellow), for the full bundle ('all'), MeTA_25% (‘core’), and 15 segments along
MeTA_25% length across acquisition protocols of the QTIM dataset. *The
local segments (1, 2) of the CST bundle have a zero dice score due to the
different fields of view and slice thicknesses between the QTIM protocols.

Overall, the ICC of FA for the high-quality HCP dataset
was moderate to highly reliable (ICC > 0.5) across all tracts
for the full bundle ('all'), MeTA_25%, and most 15 segments
along MeTA_25% length. In the QTIM dataset, moderate local
compatibility was found in segments along MeTA_25%
length. The ICC of the segments was often higher than that of
the full bundle and was moderately compatible on several
segments across all tracts across protocols. We note
harmonization would improve compatibility.
TABLE III. MEAN FA ICC3K COMPATIBILITY ESTIMATES ACROSS 4 LATERALIZED
TRACTS FOR ALL, CORE (META_25%) AND 15 SEGMENTS ALONG META_25% IN THE
QTIM DATASET.

B. ADNI Cognitive and Clinical Associations
In general, participants with cognitive impairment, tau

pathology, and higher CDR-SB scores showed negative
associations with FA and positive associations with MD
measure across all bundles, as expected. A subset of our
regional results is displayed in Figure 4. Our analysis of DTI
values in the MeTA_25% core volume and its segments
showed some regional associations to be stronger than the full
bundle (‘all’).

TABLE IV. DTI MEASURES IN THE LEFT ARCUATE FASCICULUS WERE SIGNIFICANTLY
DIFFERENT (*PFDR<0.05) BETWEEN GROUPS OF INDIVIDUALS WITH MCI OR AD
COMPARED TO CN.

IV. DISCUSSION
We have introduced an along-tract method of population

analysis using a new approach we call MeTA. Here, we
establish correspondence across subjects while considering
differences in the shape of each bundle across subjects using
dynamic time warping. We found good, reliable fractional
anisotropy (FA) values across 15 segments for MeTA_25%
labels in HCP. We further test cross-acquisition protocol
compatibility across two very divergent diffusion acquisition
schemes in the QTIM dataset, to identify several segments
along MeTA_25% for which compatibility can be achieved.
This highlights the potential for MeTA in multi-site,
multi-study analyses of tractography across diverse acquisition
protocols such as those that may be available in large-scale
consortia such as ENIGMA [23]. Other methods such as
RecoBundles for bundle segmentation, have been shown to be
sensitive to the scanner resolution and diffusion-weighted
directions [24]. The MeTA approach allows us to capture the
regional variation within the bundle at the subject and group
levels. Future work will involve analyzing the shape
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deviations of each individual segment, and statistical
harmonization along tracts for multi-study analyses.

Fig 4. T-values for MeTA_25% along tracts for bundles segmented; colored
areas indicate significant associations (PFDR<0.05) with clinical impairment,
CDR-SB, and tau pathology.
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