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ABSTRACT

Brain structural changes in older adults over time can help identify and predict which individuals are at risk for
neurodegenerative disorders and dementias. These trajectories are traditionally calculated by assessing localized rates of
brain tissue atrophy from a longitudinal series of brain MRIs as compared to group averages. However, these methods do
not preserve individual differences in brain structure, which may provide added information regarding risk. A map of
how an individual’s brain may look at a given age - in the case of a normal, healthy, aging trajectory - may help to
identify deviations and abnormalities when presented with a true scan at that age. Here, we consider estimating the
age-related brain changes as a domain transfer problem. We develop a fully unsupervised generative adversarial network
(GAN) with cycle consistency reconstruction losses, trained on cross-sectional brain MRI data from participants of the
UK Biobank aged 45 to 81. We show that brain MRIs for males and females at a given age can be predicted by
converting the content information encoded in a T1-weighted MRI (i.e., the individual’s identifying anatomical features),
accompanied by adding the style (age/sex) information from a reference group. Results on the PREVENT-AD cohort
demonstrated that our style-encoding domain transfer model can predict follow-up brain MRIs, successfully, without
relying on longitudinal data from the subjects. We show how deviations from the predicted images are indicative of
factors related to neurodegenerative disease risk.
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1. INTRODUCTION
The human brain undergoes dynamic structural changes with age1. Brain mapping studies often aim to identify the
patterns of regional changes that may be indicative of an underlying disease; for example, accelerated temporal lobe
atrophy may be indicative of risk for late-onset Alzheimer’s disease (AD) and related dementias2. Traditional brain
mapping approaches often use non-linear registrations between longitudinally collected brain MRIs to calculate local
deformations, which are later compared across subjects in a template space3. While these efforts are important for
understanding group trends, they are susceptible to biases from template selection and creation4, 5, 6, and often rely on
images from subjects scanned across a wide range of intervals, adding scanner and scanner drift variability as confounds.
The ability to generate an individual’s brain MRI at a given age could help with the detection of more subtle effects, such
as the effect of a genetic marker on brain structure. If scans were acquired from individuals all at the same age, then
statistical models would not need to include these age-related nuisance variables and may be better powered to study
subtle effects5.

Generated images of future brain MRIs could also suggest how the brain would age under healthy, normal,
conditions creating a benchmark for an individual’s brain structure at any age. Deviations detected in the true image, as
compared to the generated image, could serve as proxies for disease related abnormalities or risk factors for decline, such
as being carriers of the major genetic risk factor for AD, APOE4. This concept has been encapsulated in “brainAge”, a
single metric used to describe the most likely age for an individual based on brain MRI features7. However, in addition to
losing anatomical specificity, brainAge has several other limitations as detailed in 8. A generated 3D brain MRI would
provide a detailed map of where the deviations occur.



Recently, deep learning-based models have been used in brain MRI generation and synthesis to simulate and
predict future neurodegenerative trajectories9, 10, 11. Several methods have been proposed to achieve this task. A few
implementations combine geodesic regression with deep learning to capture longitudinal brain changes12. Early models
predicted the brain changes using population-based patterns without considering individual differences13. More recent
deep generative methods used generative adversarial networks (GAN)14 or a conditional adversarial autoencoder11. Such
methods require large amounts of longitudinal data that cover a long-time span with frequent sampling to provide the
ground truth to supervise the training, and this data is typically very difficult and expensive to acquire. Other
unsupervised methods, such as the conditional variational autoencoder (VAE) and conditional GAN15 have been used to
predict MR images of older individuals from their younger selves using cross-sectional data; yet these models are not
currently capable of including informative covariates such as sex. Furthermore, the quality of the images may not be
sufficient for downstream automated image processing.

Deep learning methods have also achieved diverse image translations by disentangling the image into ‘content’
and ‘style’ spaces16, where contents represent low level information in images such as contours and orientations, and
styles can be considered high level information such as colors and textures. Images from different domains share the
same content space but show different styles. This breakdown has been applied to show promising results for MRI
harmonization17, 18, and cross-modality medical image conversions19.

We consider the aging brain prediction as a domain transfer problem rather than a conditional image synthesis
problem, where the individual anatomic patterns (or contents) from MR images collected from different ages (styles)
belong to different domains but share the same latent content space, and can be converted between each other. These
content patterns, which reveal the individually different brain anatomical structures, can be learned using an
unsupervised cycle consistent GAN model. Thus, no longitudinal images are needed from the same subjects. Here we
describe our model and its implementation, and we compare our results with a framework based on the conditional
adversarial autoencoder (CAAE) that was originally used for face aging applications. We highlight our results on an
independent test set with longitudinal validation data, showing that our generated images can indeed pick-up age related
trends, and can be used as inputs for widely-available automated neuroimage data processing tools to generate features
that are sensitive to risk factors for neurodegeneration, specifically APOE4.

2. METHODS
2.1 The architecture of the style-encoding GAN

We used the single StarGAN-v2 framework20, which consists of a single encoder E, generator G, and discriminator D
(Figure 1). We consider X to be a set of brain MR images and Y the set of age and sex specific domains; across five year
age bins between the ages of 45 and 80, we had 14 domains - seven each for males and females. Given an image x ∈ X
and the original age bin y ∈ Y, we trained this network to produce output images in all the age domains for the subject’s
indicated sex. The style encoding block E was designed to extract the age information to produce age/sex specific styles
using training images binned into the various domains. This allows G to translate an input image x into an output image
G(x,t) to reflect the aging pattern of the target age bin yt. Here, t = M(z,yt) is the age factor for input x, generated using a
mapping network M from sampling a latent vector z and the target domain yt. The target age group t is then associated
with both the target domain patterns as well as the domain-irrelevant patterns from the input image. t, rather than z, is
used because the intermediate latent space obtained from the mapping network does not have to support sampling of the
latent vector z according to a fixed distribution, thus enforcing a disentangled representation to generate more realistic
images21. Adaptive instance normalization (AdIN)22 was used to inject t into G. The discriminator D then tries to
distinguish between the original input image x and the generated output image G(x,t) produced by G. The network trains
E such that if an image was generated based on age bin t, then t would also be encoded when this generated image is an
input to E with the target domain: E(G(x, t), yt) = t.

2.2 Network Losses

Our model was trained using the following losses:
Adversarial loss. Generator G produces G(x, s) where x is the input image and s is the target style code M(z, y). This
target style code is generated while training the network, where M is the mapping network and z is a random latent code.
The discriminator D tries to distinguish the output image G(x, s) from the input image using the adversarial loss shown
below:
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Cycle-consistency loss23. This term is the difference between input and the generated images. This loss is used to check
if the generated images preserve the anatomical patterns of the input image x:
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Style reconstruction loss. This loss enforces the generator G to use the style code s from a reference set to produce an
output image G(x, s) with the encoder:
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Style diversification loss24. This regularizes the generator G to explore the image space and generate diverse images to
preserve the individuality of each input image:
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Fig 1. A. The architecture of the style-encoding GAN. Generators learn to generate images by inputting a source image
and a style code (age pattern). The learning process is guided by an adversarial loss, cycle consistency loss, and a style
reconstruction loss. B. The detailed architecture of the generator in the network. In each block, the three numbers
represent the number of input channels, output channels, and the image size, respectively.



2.3 2D implementation on 3D images

Our model is based on a PyTorch implementation of StarGANv2 (https://github.com/clovaai/stargan-v2.git). The model
was trained on one GPU node on a Cisco C480 ML server with 8 SXM2 V100 32 GB, NVLink interconnect and 2 x
6140 Intel Skylake processor for 130,000 epochs for 6 days with a batch size of 4 and the following lambda values: λ

𝑐𝑦𝑐
=3, The lambdas were modified until we could see anatomical variability across subjects in theλ

𝑠𝑡𝑦
= 2 𝑎𝑛𝑑 λ
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generated images.
Although brain MRI scans are 3D volumes, GPU memory limitations prompted our network architecture to be

designed for 2D images instead. We transformed the 3D scan into a series of 3-slice or 3-channel images across the
brain’s sagittal plane and saved them as conventional PNGs where each channel represented one slice. The model was
trained on these PNG images and then the predicted 3 channel image series was stacked and transformed back into a 3D
volume.

In the generative adversarial architecture for style transfer, all slices are loaded in such a way that the model
learns the transformation across all bins for that particular slice number across each pair of age bins. If an image has to
be transformed from age bin 60 to age bin 70, one subject in age bin 70 would be the reference subject and images in age
bin 60 will be transformed to age bin 70 using the trained generator. The error in the prediction would be controlled in
training by the discriminator; the generator weights are updated to minimize the distance to the desired target population.

2.4 Data Processing

We used a subset of 3,400 T1-weighted brain MR images (age range 45-81) from the UK Biobank dataset25 which was
further split into 2,800 training images (1,400 for each sex) and the rest were used in the validation set. The data
distribution is shown in Table 1. These subjects were then divided into 5-year age bins to predict the aging patterns more
accurately. There were exactly 200 subject images in each age group per sex. All the images were non-uniformity
corrected, skull-stripped using HD-BET26, linearly registered to the MNI template using FSL’s flirt27 with 9
degrees-of-freedom and resized to 256×256×256. An independent longitudinal test set of 50 subjects from
PREVENT-AD28, 29 was used for testing the performance of the model. This test set contained images with a 4 year time
interval between scans, which fell into distinct age bins. The generated images for each subject were then subjected to
two standard image processing pipelines to demonstrate the downstream utility of the generated images. We extracted
cortical gray matter volumes using FSL’s fast30 and hippocampal volumes using Hippodeep31.

Table 1. Demographic breakdown of subjects in the two datasets used.

Dataset Age (years) N Male/Female N APOE4  0/1 N Train/Test

UK Biobank 62.5 ± 9.6 (45-81) 1700/1700 2563/837 2800/600

PREVENT-AD 66 ± 4.2 (55-74) 16/34 29/21 0/50

2.5 Statistical analysis

We compared predicted vs original gray matter atrophy rates between APOE4 carriers and non-carriers within
PREVENT-AD, adjusting for sex and baseline age. As our GAN is trained on neurologically healthy non-demented
individuals from the general population where the large majority of the population does not carry the APOE4 allele, we
would expect the difference between the predicted and actual follow-up volumes, as a fraction of the baseline volume, to
be larger (i.e., less accurate predictions) for individuals at heightened risk for disease.

2.6 Comparison with the Face Aging network model

A conditional adversarial autoencoder (CAAE)32 based on (https://github.com/ZZUTK/Face-Aging-CAAE.git) was
trained on a subset of UK Biobank data (9,851 males, 11,536 females , age : 62±7 years). All the subjects were skull
stripped using HD-BET26, linearly registered with 9 degrees of freedom to the MNI152 space using the FSL’s flirt27

command. This model is based on 2D images. Before embarking on a 3-slice sequential sagittal model for a full 3D
brain MRI, we initiated model training and comparisons on the mid-axial slice because ventricular regions across
different age groups were most evident in this slice. This model was trained for 1000 epochs using the following

https://github.com/clovaai/stargan-v2.git
https://github.com/ZZUTK/Face-Aging-CAAE.git


hyperparameters: batch size: 100; learning rate: 1x10-5; weight decay: 1x10e-5; β1: 0.9; latent (Z) vector: 200 components
on one GPU node on a Cisco C480 ML server with 8 SXM2 V100 32 GB, NVLink interconnect and 2 x 6140 Intel
Skylake processor for 4 days.

3. RESULTS

3.1 Qualitative visualizations of the aging brain

Qualitative visualizations of generated images are shown in Figure 2 alongside true baseline and follow-up scans for a
single control male subject from the independent PREVENT-AD cohort. We also highlight successful downstream
processing of the generated images by showing the hippocampal segmentation masks and gray matter outlines for all
original and generated images. Figure 3 plots volumes for predicted and original average of left and right hippocampi
for baselines and followup.

Fig 2. A. Brain age progression- Original “O” axial, coronal and sagittal slices of an input male subject (control) from
PREVENT-AD at age 66 and 70 and predictions (P) for the same individual aged 45-49 to 75-80 in five year
increments. Changes in areas of CSF (ventricle size) with age are visible. Gray matter masks for the first (P 45) and the
last age bin (P 75) have been highlighted in green to highlight successful downstream processing of the generated
images. Last column shows the residual image (P70 - O70). B. Zoomed in sagittal view of right hippocampal masks
extracted on original and generated images indicate the atrophy detected in the hippocampi with respect to age.

3.2 Hippocampal and cortical gray matter volume extractions

For each test subject, the differences between the gray matter volumes for true and predicted follow-up scans were
calculated. Figure 4 highlights the difference between APOE4 carriers and non-carriers. APOE4 status was associated
with a greater difference in predicted vs true gray matter volume atrophy rates (p=0.018, se=0.011, β=0.028). Sex was
also significant in the model with females having larger volume differences than males (p=0.013, se=0.012, β=-0.033).
When we stratified by sex, only females showed significant APOE4 carrier associations with the atrophy predictions
(p=0.013, se=0.013, β=0.034).



Fig 3. Observed (circle) and predicted (cross) follow-up hippocampal volumes are plotted against the observed baseline
volumes for each individual test subject in PREVENT-AD, a cohort of individuals at high-risk for dementia.. Left: the
observed value of the hippocampal volumes extracted using HippoDeep. Right: average hippocampal volumes as a
fraction of baseline intracranial volume (ICV). APOE4 carriers are marked in orange, non-carriers in blue. Marks off
the lower diagonal of the y=x line indicate larger volumes, while marks on the upper diagonal indicate smaller volumes
than baseline. Our model generated images that largely predicted larger volumes than those that were ultimately
observed.

Fig 4. Left: A scatter plot of the data shows the differences between the predicted follow-up volumes (Pred Tp2) and
the original (observed) follow-up volumes (Orig Tp2) as a function of the original (observed) baseline volumes (Orig
Tp1). APOE4 status was associated with the difference in predicted vs true gray matter volume atrophy rates (p=0.018,
se=0.011, β=0.028). As our aging model was based on aging without dementia, the error between the predicted and true
follow-up scans was found to be higher in individuals at heightened risk for AD, specifically APOE4 carriers than the
non-carriers, indicating the error in prediction may serve as a biomarker for diseases. Right: Box plots show that female
carriers show larger errors between the predicted and observed gray matter volumes after adjustments for baseline gray
matter volumes in test data. Females showed significant APOE4 carrier effects (p=0.013, se=0.013, β=0.034), but not
males p=0.485.



Fig 5. Brain age progression using the CAAE- Observed “O” axial brain MRI slice of input subjects from
PREVENT-AD of a male at age 66 years (first row) and a female aged 62 years (second row) respectively; predictions
for the same individual aged 45-49 to 80-85 in five year increments. The first white box indicates the original baseline
image while the second box shows the model-generated image with an age group closest to the original. Although
ventricular enlargement is evident with progressively older age bins, the individuality of the subjects were not
preserved and subjects largely resemble each other within specific bins.

4. DISCUSSION AND CONCLUSION
We have shown that domain and style-encoding GANs trained on large cross-sectional MR databases may provide an
opportunity to predict how an individual’s brain may change under normal, healthy, circumstances, from a single input
image at arbitrary age. Our model does not rely on longitudinal images from the same subjects. In comparison with other
paradigms, a CAAE model based on FaceAging algorithms (2D color images) also does not rely on longitudinal images
and takes less time to train than our current model, but produces similar output for all the inputs. The CAAE model was
trained on mid-axial slices, so the ventricular enlargement over a period of time was captured by the model -- yet
individual variations were not captured. The output was similar for all the subjects, therefore, only qualitative
comparisons were made with the original images. There have also been other implementations to generate 3D brain
volumes using cross-sectional data. For example, one line of work aims to generate MRIs for data augmentation
purposes using auto-encoding GANs and are not designed to be true to any individual so cannot be used for
individualized predictions33. Another line of work aims to predict older brain MR images from younger ones using
cross-sectional data, but their conditional GAN based model used is not capable of including more covariates such as
sex15.

The proposed style-GAN method described in this work may have several advantages for the neuroscience and
aging research communities. A model trained on healthy subjects, such as ours, may also provide a way to set up
individual normative models. Such models can monitor the deviation of individual brain changes according to the
normative trajectories, which might be more sensitive to track the early progression of abnormalities due to brain
diseases. Our work may be viewed as complementary to the common “brainAge” metric, which provides a cross
sectional look into whether a brain MRI overall is considered to reflect accelerated aging7. Several studies have tried to
train deep learning models to predict brain changes conditioned not only on ages but also other clinical information, e.g.,
white matter hyperintensities9. In future work, we will expand our training models to condition aging on more factors,
including APOE4 carrier status as a genetic risk for dementia.
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