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Abstract— This paper is aimed at developing an application 
that automatically detects food objects in real-time scenes and 
localizes them within the image, which can be used in a 
standalone or connected application framework. A dataset 
compiled from multiple online sources was used to train a Single 
Shot Detector (SSD) configuration. The object detection model 
and various convolutional network architectures were paired 
with the Single Shot Detector and the most efficient approach 
was identified as InceptionV2 convolutional neural network 
architecture paired with a Single Shot Detector. 

Keywords—Real-time Food-Object Detection, SSD Detector, 
SSD_InceptionV2, 60 classes, Tensorflow 

I. INTRODUCTION  
Humans can perceive the three-dimensional structures of 

objects around us with ease. Researchers in computer vision 
have been developing mathematical techniques and models 
for mimicking human perception of vision. There are reliable 
techniques for computing a partial 3D model of an object or 
environment from thousands of partially overlapping 
photographs. Computer vision is a field of artificial 
intelligence that trains computers to interpret and understand 
the visual world by using digital images and deep learning 
models to accurately identify and classify objects[1]. 

Early experiments in computer vision that took place in the 
1950s, used some of the first neural networks to detect the 
edges of an object or to sort simple objects into categories like 
circles and squares. Mobile technology with built-in cameras 
has eased the process of data collection (images and videos). 
Processing power and computing technologies have become 
more affordable and easily accessible. Hardware and Software 
have been designed especially for computer vision and 
analysis. Algorithms like convolutional neural networks and 
recurrent neural networks can take advantage of such 
hardware and software capabilities. 

This paper concentrate on object detection and 
classification specifically targeting applications in the food 
industry. Good nutrition is an important part of leading a 
healthy lifestyle. In the field of nutrition, food industries have 
been constantly booming with multitudes of gadgets and 
smartphone applications. A variety of applications are 
currently present in the market used for nutrient monitoring, 
recipe search, food delivery, and choosing good restaurants. 
This paper aims at providing a framework for auto-detecting 
food scenes, classifying, and localizing objects. 

II. LITERATURE SURVEY 
Ashutosh Singla et al., 2016 have given a system 

using a pre-trained GoogleNet classifier model based on a 
deep convolutional neural network for identification and 
segregating food images from non-food images and also to 
distinguish the food item into its class.  

They have trained their model on two publicly 
available datasets and also data gathered from imaging 
devices and social media. They have further fine-tuned and 
made improvements to the existing model for achieving 
99.2% on food/non-food classification[2]. 

 
Kuang-Huei Lee et al., 2018 have provided selected 

examples of CleanNet (a joint neural embedding network), 
results on the Food-101 dataset. They have also integrated 
CleanNet and conventional convolutional neural network 
classifiers into one framework for image classification 
learning. In this paper, the difficulties in scalability and 
classification of data with high noise have been illustrated. A 
transfer-learning based approach has been applied for the 
training of the CNN model[3].  

 
Stephen Hoff et al., 2018 have proposed a system 

that identifies food based on the picture of the user’s plate. 
This system holds an advantage in image recognition and the 
internal camera of Android phones. They have trained the 
system using the SSD Mobilenet V1 object detection model. 
In this paper, they have done two levels of testing on camera 
variations such as ideal positions, angled camera, distance, 
and low lighting[4]. 

 
Zifeng Wu et al., 2019 have analyzed the architecture 

ResNet model in terms of the ensemble classifiers and the 
residual unit. A system which is spatially and performance-
wise more efficient has been proposed by them for large 
networks. They have used a bunch of shallow networks over 
deeper networks for this and have shown that the shallow 
network achieves better performance over the latter and also 
evaluated the impact of using different networks on the 
performance of semantic image segmentation and shows that 
these networks, as pre-trained features can boost existing 
algorithm[5].  

 
Marc Bolaños and Petia Radeva,2016 have proposed 

a system that performs both localization and recognition of the 
food item with high precision and reasonable recall levels with 
only a few bounding boxes. The system has been proven 
applicable for both conventional and noisy images with 
considerable accuracy achieved for both[6].  

 
Kiyoharu Aizawa et al., 2019 have proposed a 

personalized system for the classification of food image 
recognition in a real-world scenario. To achieve better 
performance, a weight optimization-based algorithm has been 
employed. The intra-class diversity and similarity during 
image recognition are also addressed in this paper[7].  20

20
 I

E
E

E
 I

nt
er

na
tio

na
l C

on
fe

re
nc

e 
on

 M
ac

hi
ne

 L
ea

rn
in

g 
an

d 
A

pp
lie

d 
N

et
w

or
k 

T
ec

hn
ol

og
ie

s 
(I

C
M

L
A

N
T

) 
| 9

78
-1

-7
28

1-
88

85
-0

/2
0/

$3
1.

00
 ©

20
20

 I
E

E
E

 | 
D

O
I:

 1
0.

11
09

/I
C

M
L

A
N

T
50

96
3.

20
20

.9
35

59
87

Authorized licensed use limited to: University of Southern California. Downloaded on August 03,2024 at 20:48:08 UTC from IEEE Xplore.  Restrictions apply. 



 
 

978-1-7281-8885-0/20/$31.00 ©2020 IEEE 

Takuya Akiba et al., 2017 in their paper, demonstrate 
that training the ImageNet dataset on a Resnet-50 DCNN 
model can take as little as 15 minutes. They achieved with the 
help of a 1024 Tesla p100 GPU's, training the model for a total 
of 90 epochs with an image batch size of thirty-two thousand 
images. They have used several techniques such as a slow start 
learning rate scheduler along with batch normalization and 
RMSprop warm-up [8].  

 
Krzysztof Wo�k et al., 2019 have proposed a system 

that uses the Resnet-34 neural network model for the 
classification of images. They have made of the use of 
Google's cloud platform along with fast.AI making it easy to 
train a model. They have trained their model on a dataset 
containing images of 7000 od polish cars and have managed 
to get an accuracy of 99.18% [9]. 

III. DATASET 
The dataset consists of a total of 4200 images categorized 

into 60 classes listed in Table 1 with each class consisting of 
70 samples. The data used in the paper is collected from 
various online resources and labeled manually. The 
resolution of the images varies between 200 x 200 and 512 x 
512 and all images are of the JPEG format. The images 
considered for the dataset belong strictly to Indian cuisine and 
the most common dishes were chosen based on consumer 
popularity across India [12]. Part of the UEC-Food-256 dataset 
was also used for training a few classes. The UEC Dataset is 
part of the Food Recognition Research Group. [23]  

A. Labeling of Dataset 
An open-source graphical annotation tool, label-IMG, 

was used for manual labeling the images. The tool allows 
bounding boxes to be graphically drawn on the image to 
annotate the objects of interest. The coordinates of the 
bounding boxes in the image are stored using the Pascal VOC 
standard in an XML file consisting of the image information 
and object information. 

B. Data Augmentation 
Data Augmentation is the technique by which additional 

samples are created using the original images by slightly 
varying the original image like flipping, zooming, blurring, 
and mirroring. A total of 4 different functions were used to 
augment the data which resulted in a total of over 15000 
images to be used as data for the model. The augmentations 
used to increase the dataset include horizontal flip, random 
scaling of image, random shearing of image, random rotation 
across the central axis [14]. 
 

SNO CLASS NAME SNO CLASS NAME 
1 gulab_jamun 31 ven_pongal 
2 paniyaram 32 chilly 
3 vada 33 halwa 
4 idli 34 pickle 
5 dhokla 35 juice 
6 chicken_tandoori 36 rubber_halwa 
7 poori 37 milk_tea 
8 samosa 38 uthapam 
9 naan 39 soup 
10 kati_roll 40 poriyal 
11 chappati 41 omlet 

12 gravy 42 milk 
13 coconut chutney 43 raitha 
14 chaat 44 black tea 
15 sambar 45 aloo_masala 
16 mint_chutney 46 pasta 
17 fish fry 47 rice plain 
18 lemon slice 48 ketchup 
19 brownie 49 cake slice 
20 biryani 50 boiled egg 
21 dosa 51 pizza 
22 chicken 52 cucumber 
23 papad 53 tomato 
24 tomato chutney 54 mayo 
25 ice-cream 55 rice tomato 
26 sandwich 56 rice curd 
27 bisibelebath 57 rice lemon 
28 onion sliced 58 rice fried 
29 upma 59 water 
30 noodles 60 carrot_halwa 

Table1: List of Classes Labelled for Object Detection 

IV. OBJECT DETECTION FRAMEWORK 
The Object detection approach has two major setups, one 

using Faster RCNN and others using Single Shot MultiBox 
Detector (SSD). An R-CNN is a special type of CNN that can 
locate and detect objects in images: the output is generally a 
set of bounding boxes that closely classify each object 
detected, as well as a class output for each detected object. 
Though faster RCNN could yield the highest accuracy, the 
hardware requirements to tackle the computing complexity 
are very high and the training timeline is in days [15]. Any 
changes made to model configuration will take a longer time 
to be studied for any impact on the model [20]. In our case for 
60 classes, the Faster RCNN was way too complex and 
required around 3 hours to compute for one batch of size 2.  

 
The SSD configuration is highly preferred for lite mobile 

applications because of the lighter architecture in the number 
of parameters in comparison with the faster RCNN, 
Moreover, the prediction is in a single pass. Object 
localization and classification are done in a single forward 
pass of the SSD network. An object detector network that also 
classifies those detected objects is present.  The proposed 
methodology used has been represented in Fig.1. MultiBox’s 
loss function also combined two critical components that 
made their way into SSD [9]. Confidence loss measures the 
confidence level in percentage for an object to be inside a 
detected bounding box. Categorical cross-entropy is used to 
compute this loss. Location Loss measures how far away the 
network’s predicted bounding boxes are from the ground 
truth ones from the training set. L2-Norm is used here. Alpha 
term refers to the learning parameter balancing the 
localization loss.  
multibox_loss = confidence_loss + alpha * location_loss 

 
For the SSD Configuration chosen, there were multiple 

CNNs available. This research work includes building and 
fine-tuning two CNN architectures, MobileNetV2 and 
InceptionV2. Besides, Resnet50 was also tried and the 
projected accuracy was less than that of inception or mobile 
net. The following explains the implementation tried out 
concerning this paper. 
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V. NETWORKS FOR SSD 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1: Framework of Proposed Methodology 

A. MobileNet_V2 

In MobileNetV2, there are two types of blocks. One is the 
residual block with the stride of 1 and another one is a block 
with a stride of 2 for downsizing. There are 3 layers for these 
two types of blocks. The first layer is 1×1 convolution with 
ReLU6 and the second layer is the depthwise convolution. 
The third layer is a linear 1×1 convolution. The network 
computational cost up to 585M Adds, while the model size 
varies between 1.7M and 6.9M parameters. 16 GB Tesla GPU 
with a batch size of 96 was used to train the network [16]. 
 

B. Inception_V2 
Inception_V2 is a reduced representational bottleneck 

framework, which prevents too much loss of information on 
increased dimensionality reduction in comparison with 
MobilenetV2. Using smart factorization methods, 
convolutions can be made more efficient in terms of 
computational complexity [17]. Complexity is reduced by 
factorizing 5x5 convolution to two 3x3 convolutions, 
factorizing convolutions of filter size n x n to a combination 
of 1 x n and n x 1 convolutions and expansion (make wider 
instead of deeper) of the filter banks to remove the 
representational bottleneck. 

VI. TRAINING PIPELINE FOR FOOD OBJECT DETECTION 
In the previous section, various architectures were 

discussed. The model architecture which provided the highest 
was SSD_Inception_V2. To rapidly prototype a model for 
this customized application, the model training was initiated 
with a pre-trained checkpoint. This pre-trained checkpoint 
was trained for COCO Dataset, a large-scale open-source 
object detection, segmentation, and captioning dataset 
compiled by Microsoft [22]. In this section, the entire pipeline 
for training a model for a custom dataset is discussed in detail. 

A. Train-Test Split 
After augmentation, the dataset size was increased to 

contain more than 15000 images with a cumulative of 60 total 
classes of objects. Since the evaluation of the model is 
necessary in training, there is a need to set aside evaluation 
samples, and the number of times each sample will be tested. 
In this case, each sample tested is an image and its 
corresponding label XML file. The train to test ratio used to 
train the current model is 8:2, i.e., 20% of data was used for 
evaluation. The split was done randomly by sampling 20% of 
images and their corresponding labels from the master data. 

B. TF Record Creation 
Once the training and testing data were split, the XML 

files containing the bounding box and class info for each 
image were combined in a single CSV file for train and one 
for test data respectively. In the CSV file, crucial fields like 
image name, object name, and the coordinates of corners of 
the bounding box containing that object were only retained. 
Other additional information from the Pascal VOC labeling 
format were discarded at this stage. To achieve maximum 
efficiency in reading data, we must serialize the data such that 
data read will be linear. This technique has also been proven 
effective in caching data pre-processing. The TFRecord 
format is a proprietary format for storing a sequence of binary 
records [18].  

The TFRecord is easily parsed and accessed by tensor 
flow avoiding excess time required in parsing data to trainer 
session if the data is stored conventionally. A TFRecord file 
holds a series of records where each record is a byte-string. 
The images and CSV have been used to create two 
TFRecords, one for training and one for testing. Once the 
TFRecords have been generated, the use of the Dataset in the 
original format is no longer required unless the train test split 
ratio is modified or data is added or deleted. TFRecord 
creation step has to be repeated for any afore-mentioned 
change. 

A: 90% 
B: 96% 

SSD + CNN 

OBJECT DETECTION MODULE 

CROPPED IMAGE 

ORIGINAL 
IMAGE 

N x N 

RESIZED IMAGE 
300 x 300 

TOP 
PREDICTION 

TOP 5 
PREDICTIONS 

OUTPUT IMAGE 

PLOT CONFIDENCE 
> 0.6 

CLASSIFIED OBJECT 
LABELLING 

 - Object of Class A  - Object of Class B 
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C. Label-Map Creation: 
Label-Map is a “.pbtxt file” which maps each class name 

or object name to a non-zero integer key value. It is much 
similar in the naming convention to JSON. An example of 
an entry in the Label-Map file is as follows:  

item {id: 1 
 name: 'idli'} 

The number of items in the Label-Map file must match 
the number of classes entered in the model configuration file 
of the chosen model architecture. In this case, there are 60 
items in the label-map file. 

D. Model Configuration 
The total number of classes is 60. The coder used was a 

faster RCNN box coder with 10 scaling along both x and y-
axis and scaling of 5 across both height and width. The 
argmax matcher was used with a threshold of 0.5. The 
number of negatives during matching was maintained to be 
lower than unmatched. Each Sample will be tried to match 
forcefully even if the accuracy is low. The Intersection over 
Union(IOU) is the similarity measure used to evaluate the 
box localization for the object. An SSD anchor generator with 
6 layers, a minimum scale of 20 %, and a maximum scale of 
95% with reduced boxes in the lowest layer are used to train 
the model. The input image tensor is of size 300 x 300. All 
images were resized to match the input tensor shape. A 
convolutional box predictor was used with a kernel size 3 
with RELU activation. This convolutional layer included L2 
regularization. 

 
Inception_V2 architecture was used to extract features 

from the images. Batch normalization was also used to 
regularize weights across images in a batch. Batch non-max 
suppression was also used to boost the efficiency of the model 
when fed with blind images. The training was monitored by 
an RMSprop optimizer. The learning rate of the optimizer 
was dynamically changed along the course of the training. 
The learning rate was lowered as the epochs increased to fine-
tune the learning. An initial learning rate of 0.002 was used. 
When the training was truncated upon saturation of accuracy, 
the final learning rate was 0.00075. The total steps planned 
for this model was 150,000. Since the variance of accuracy 
was 0.001 for more than 2500 steps, the training was 
truncated at 80,000 steps. The evaluation of the samples after 
each epoch was done only once. All the samples in the test 
data were evaluated. For monitoring purposes, 15 samples 
were tested and their results were monitored using 
TensorBoard.  The batch size was set concerning the amount 
of available VRAM. In setting up the environment, the 
computing resources have been discussed in detail. 

E. Training Environment 
a. Hardware Environment 

Deep Learning requires high computing power. 
During the initial phases of this research work, online 
compute engines were used to have Intel Xeon processor 
and NVidia Tesla GPU. Throughout the process, as we 
increase the number of data points and classes, the 
handling of data in the cloud environment grew difficult. 
We used Google Colaboratory in the initial stages. Later 
on a high-end system with 6 core 10th Gen Intel i7 
Processor, 32 Gb RAM, and 6GB NVidia Graphics with 

Compute Capability 7.5 were used to train the final 
model. The final training was performed with a batch 
size of 24 using the high-end system. This change had no 
impact on the result of the trained model. In the second 
setup, the training time was increased when comparing 
to the Google Colaboratory notebook. 
 

b. Software Environment 
Tensor Flow has an API specifically tailored to train 

and deploy Object Detection models. The API requires 
Tensorflow-GPU (1.15.0), NumPy (1.17.4), OpenCV 
(>3.4), and pycocotools. The environment used was 
Python 3.6 running anaconda with all the above-
mentioned packages installed. In addition to these 
packages, the CUDA toolkit for the GPU and supported 
Graphics Driver was installed to make use of GPU 
resources in the training environment. The dlls required 
for the TensorFlow to utilize the GPU have to be 
fetchable in the python environment. 

 

F. Model Training 
The model was trained for 80000 steps and truncated 

since the variance in accuracy was less than 0.001 for more 
than 2000 steps before the stoppage. The configurations for 
training the model were passed on to the TensorFlow API 
through a configuration file to the training script of the API. 
The above-mentioned configurations were included and 
training was monitored using the TensorBoard visualization 
tool. The training approximately took less than 6 hours to 
complete 80000 steps for the final model. Prototyping and 
fine-tuning the hyperparameters consumed more than 6 hours 
daily for 3 weeks. 

G. Prediction Environment 
The trained model was exported to form an inference 

graph and weights were dumped to a checkpoint file. This 
weight was used to validate the accuracy of the model to set 
up a prediction environment. The prediction was quick at the 
average rate of 14 fps.  

VII. RESULTS AND INFERENCE 
In this research paper, both SSD_MobilnetV2 and 

SSD_InceptionV2 were trained until the point of 
convergence. The point of convergence was achieved during 
training when the total loss (computed for validation data) 
had a variance of less than 1e-3 for at least 10 consecutive 
epochs.  The MobilenetV2 architecture converged at 60000 
steps and InceptionV2 architecture at 80000 steps. The 
metrics of both trials are tabulated in Table 2. mAP stands for 
Mean Average Precision, 50IOU stands for Max_50_class 
Intersection over Union for Bounding Box and 100IOU 
stands for Max_100_class Intersection over the union.  

The current use case has 60 classes only, so the 100 IOU 
depicts the IOU score for all classes in the dataset. From the 
results, it is evident that InceptionV2 is having better 
accuracy in comparison with MobileNetV2 Architecture for 
CNN paired with SSD. The SSD used was similar in 
configuration (as discussed earlier) for both MobileNetV2 
and InceptionV2 architectures. Shown in Fig.2 are some of 
the predictions obtained for test images using the trained 
SSD_InceptionV2 model. 
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Input Image Predictions Input Image Predictions

Fig.2: Predictions from the Trained InceptionV2 Model 
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 MobilenetV2 InceptionV2 
mAP 0.59 0.738 

mAP(Large) 0.632 0.769 
mAP(Medium) 0.308 0.575 

mAP(Small) -1 0.612 
50IOU 0.909 0.9645 
75IOU 0.804 0.8627 
Recall 0.524 0.792 

Classification Loss 1.98 1.284 
Localization Loss 0.293 0.245 

Regularization Loss 0.63 0.626 
Total Loss 2.903 2.15 

Table 2: Result Metrics of MobileNet and Inception 
Networks for SSD 

CONCLUSION 
The accuracy of the model expressed through metrics is 

subjective to the accuracy of labeling the dataset. Using the 
open-source tool, there were shortcomings in labeling 
overlapping objects. Thus a clear bounding box containing 
only the object was not possible in all cases. 
Comprehending the predictions in blind images, the 
accuracy of the prediction and localization of the bounding 
box by the SSD on the Image is far more accurate than it 
seems from the metrics. The class classification confidence 
was above 80% for 1900 of 2000 images predicted and 
above 95% for 1750 of 2000 images tested. During testing, 
the number of false predictions was in the ratio of 250:1, 
i.e., 1 false prediction per object for 250 accurate 
predictions. Comprehending that, the accuracy of the 
model can be practically estimated at 97.6%. 

FUTURE SCOPE FOR THIS RESEARCH WORK 
We believe that this paper has the potential to be useful not 
only for casual users but also in the industry lines where 
precision and resource management are of the utmost 
importance. Some of the ways that this paper can be further 
improved are: 
• Deploying a mobile application for portability and ease 

of real-time operation. 
• Adding a calorie counter that can predict the number 

of calories present in the dish by considering the 
volume. 

• Check if the dishes cooked matches the orders in a 
hotel kitchen scenario and to check if all items are 
present in an order (combo) in a hotel. 

• Increase the number of classes dynamically (by 
transfer learning) [19]. 

• End of production line checker for respective 
industries. 

• Nutrient monitoring for different diet plans (balanced, 
body buffing, etc.). 

• Having a Food log consisting of orders based on their 
popularity can help the hotel management plan the 
restocking of raw ingredients.  
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