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Abstract— This paper is aimed at developing an application
that automatically detects food objects in real-time scenes and
localizes them within the image, which can be used in a
standalone or connected application framework. A dataset
compiled from multiple online sources was used to train a Single
Shot Detector (SSD) configuration. The object detection model
and various convolutional network architectures were paired
with the Single Shot Detector and the most efficient approach
was identified as InceptionV2 convolutional neural network
architecture paired with a Single Shot Detector.
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[.  INTRODUCTION

Humans can perceive the three-dimensional structures of
objects around us with ease. Researchers in computer vision
have been developing mathematical techniques and models
for mimicking human perception of vision. There are reliable
techniques for computing a partial 3D model of an object or
environment from thousands of partially overlapping
photographs. Computer vision is a field of artificial
intelligence that trains computers to interpret and understand
the visual world by using digital images and deep learning
models to accurately identify and classify objects!!l.

Early experiments in computer vision that took place in the
1950s, used some of the first neural networks to detect the
edges of an object or to sort simple objects into categories like
circles and squares. Mobile technology with built-in cameras
has eased the process of data collection (images and videos).
Processing power and computing technologies have become
more affordable and easily accessible. Hardware and Software
have been designed especially for computer vision and
analysis. Algorithms like convolutional neural networks and
recurrent neural networks can take advantage of such
hardware and software capabilities.

This paper concentrate on object detection and
classification specifically targeting applications in the food
industry. Good nutrition is an important part of leading a
healthy lifestyle. In the field of nutrition, food industries have
been constantly booming with multitudes of gadgets and
smartphone applications. A variety of applications are
currently present in the market used for nutrient monitoring,
recipe search, food delivery, and choosing good restaurants.
This paper aims at providing a framework for auto-detecting
food scenes, classifying, and localizing objects.

II. LITERATURE SURVEY

Ashutosh Singla et al., 2016 have given a system
using a pre-trained GoogleNet classifier model based on a
deep convolutional neural network for identification and
segregating food images from non-food images and also to
distinguish the food item into its class.
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They have trained their model on two publicly
available datasets and also data gathered from imaging
devices and social media. They have further fine-tuned and
made improvements to the existing model for achieving
99.2% on food/non-food classification!?!.

Kuang-Huei Lee et al., 2018 have provided selected
examples of CleanNet (a joint neural embedding network),
results on the Food-101 dataset. They have also integrated
CleanNet and conventional convolutional neural network
classifiers into one framework for image classification
learning. In this paper, the difficulties in scalability and
classification of data with high noise have been illustrated. A
transfer-learning based approach has been applied for the
training of the CNN model®.

Stephen Hoff et al., 2018 have proposed a system
that identifies food based on the picture of the user’s plate.
This system holds an advantage in image recognition and the
internal camera of Android phones. They have trained the
system using the SSD Mobilenet V1 object detection model.
In this paper, they have done two levels of testing on camera
variations such as ideal positions, angled camera, distance,
and low lighting[,

Zifeng Wu et al., 2019 have analyzed the architecture
ResNet model in terms of the ensemble classifiers and the
residual unit. A system which is spatially and performance-
wise more efficient has been proposed by them for large
networks. They have used a bunch of shallow networks over
deeper networks for this and have shown that the shallow
network achieves better performance over the latter and also
evaluated the impact of using different networks on the
performance of semantic image segmentation and shows that
these networks, as pre-trained features can boost existing
algorithmll,

Marc Bolafios and Petia Radeva,2016 have proposed
a system that performs both localization and recognition of the
food item with high precision and reasonable recall levels with
only a few bounding boxes. The system has been proven
applicable for both conventional and noisy images with
considerable accuracy achieved for both!®,

Kiyoharu Aizawa et al., 2019 have proposed a
personalized system for the classification of food image
recognition in a real-world scenario. To achieve better
performance, a weight optimization-based algorithm has been
employed. The intra-class diversity and similarity during
image recognition are also addressed in this paper!”.
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Takuya Akiba etal., 2017 in their paper, demonstrate
that training the ImageNet dataset on a Resnet-50 DCNN
model can take as little as 15 minutes. They achieved with the
help ofa 1024 Tesla p100 GPU's, training the model for a total
of 90 epochs with an image batch size of thirty-two thousand
images. They have used several techniques such as a slow start
learning rate scheduler along with batch normalization and
RMSprop warm-up [*1,

Krzysztof Wotk et al., 2019 have proposed a system
that uses the Resnet-34 neural network model for the
classification of images. They have made of the use of
Google's cloud platform along with fast. AI making it easy to
train a model. They have trained their model on a dataset
containing images of 7000 od polish cars and have managed
to get an accuracy of 99.18% P,

III. DATASET

The dataset consists of a total of 4200 images categorized
into 60 classes listed in Table 1 with each class consisting of
70 samples. The data used in the paper is collected from
various online resources and labeled manually. The
resolution of the images varies between 200 x 200 and 512 x
512 and all images are of the JPEG format. The images
considered for the dataset belong strictly to Indian cuisine and
the most common dishes were chosen based on consumer
popularity across India ['?]. Part of the UEC-Food-256 dataset
was also used for training a few classes. The UEC Dataset is
part of the Food Recognition Research Group. %3]

A. Labeling of Dataset

An open-source graphical annotation tool, label-IMG,
was used for manual labeling the images. The tool allows
bounding boxes to be graphically drawn on the image to
annotate the objects of interest. The coordinates of the
bounding boxes in the image are stored using the Pascal VOC
standard in an XML file consisting of the image information
and object information.

B. Data Augmentation

Data Augmentation is the technique by which additional
samples are created using the original images by slightly
varying the original image like flipping, zooming, blurring,
and mirroring. A total of 4 different functions were used to
augment the data which resulted in a total of over 15000
images to be used as data for the model. The augmentations
used to increase the dataset include horizontal flip, random
scaling of image, random shearing of image, random rotation
across the central axis ['4],

SNO | CLASS NAME SNO | CLASS NAME
1 gulab jamun 31 ven pongal

2 paniyaram 32 chilly

3 vada 33 halwa

4 idli 34 pickle

5 dhokla 35 juice

6 chicken tandoori 36 rubber halwa
7 poori 37 milk tea

8 samosa 38 uthapam

9 naan 39 soup

10 kati roll 40 poriyal

11 chappati 41 omlet
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12 gravy 42 milk

13 coconut chutney 43 raitha

14 chaat 44 black tea

15 sambar 45 aloo masala
16 mint chutney 46 pasta

17 fish fry 47 rice plain

18 lemon slice 48 ketchup

19 brownie 49 cake slice
20 biryani 50 boiled egg
21 dosa 51 pizza

22 chicken 52 cucumber
23 papad 53 tomato

24 tomato chutney 54 mayo

25 ice-cream 55 rice tomato
26 sandwich 56 rice curd

27 bisibelebath 57 rice lemon
28 onion sliced 58 rice fried

29 upma 59 water

30 noodles 60 carrot halwa

Tablel: List of Classes Labelled for Object Detection

IV. OBJECT DETECTION FRAMEWORK

The Object detection approach has two major setups, one
using Faster RCNN and others using Single Shot MultiBox
Detector (SSD). An R-CNN is a special type of CNN that can
locate and detect objects in images: the output is generally a
set of bounding boxes that closely classify each object
detected, as well as a class output for each detected object.
Though faster RCNN could yield the highest accuracy, the
hardware requirements to tackle the computing complexity
are very high and the training timeline is in days ['*. Any
changes made to model configuration will take a longer time
to be studied for any impact on the model 1. In our case for
60 classes, the Faster RCNN was way too complex and
required around 3 hours to compute for one batch of size 2.

The SSD configuration is highly preferred for lite mobile
applications because of the lighter architecture in the number
of parameters in comparison with the faster RCNN,
Moreover, the prediction is in a single pass. Object
localization and classification are done in a single forward
pass of the SSD network. An object detector network that also
classifies those detected objects is present. The proposed
methodology used has been represented in Fig.1. MultiBox’s
loss function also combined two critical components that
made their way into SSD ). Confidence loss measures the
confidence level in percentage for an object to be inside a
detected bounding box. Categorical cross-entropy is used to
compute this loss. Location Loss measures how far away the
network’s predicted bounding boxes are from the ground
truth ones from the training set. L2-Norm is used here. Alpha
term refers to the learning parameter balancing the
localization loss.
multibox_loss = confidence loss + alpha * location_loss

For the SSD Configuration chosen, there were multiple
CNNs available. This research work includes building and
fine-tuning two CNN architectures, MobileNetV2 and
InceptionV2. Besides, Resnet50 was also tried and the
projected accuracy was less than that of inception or mobile
net. The following explains the implementation tried out
concerning this paper.
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Fig. 1: Framework of Proposed Methodology
A. MobileNet V2

In MobileNetV2, there are two types of blocks. One is the
residual block with the stride of 1 and another one is a block
with a stride of 2 for downsizing. There are 3 layers for these
two types of blocks. The first layer is 1x1 convolution with
ReLUG6 and the second layer is the depthwise convolution.
The third layer is a linear 1x1 convolution. The network
computational cost up to 585M Adds, while the model size
varies between 1.7M and 6.9M parameters. 16 GB Tesla GPU
with a batch size of 96 was used to train the network [°1,
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B. Inception V2

Inception V2 is a reduced representational bottleneck
framework, which prevents too much loss of information on
increased dimensionality reduction in comparison with
MobilenetV2.  Using smart factorization methods,
convolutions can be made more efficient in terms of
computational complexity 7). Complexity is reduced by
factorizing 5x5 convolution to two 3x3 convolutions,
factorizing convolutions of filter size n X n to a combination
of 1 x nand n x 1 convolutions and expansion (make wider
instead of deeper) of the filter banks to remove the
representational bottleneck.

VI. TRAINING PIPELINE FOR FOOD OBJECT DETECTION

In the previous section, various architectures were
discussed. The model architecture which provided the highest
was SSD_Inception V2. To rapidly prototype a model for
this customized application, the model training was initiated
with a pre-trained checkpoint. This pre-trained checkpoint
was trained for COCO Dataset, a large-scale open-source
object detection, segmentation, and captioning dataset
compiled by Microsoft %21, In this section, the entire pipeline
for training a model for a custom dataset is discussed in detail.

A. Train-Test Split

After augmentation, the dataset size was increased to
contain more than 15000 images with a cumulative of 60 total
classes of objects. Since the evaluation of the model is
necessary in training, there is a need to set aside evaluation
samples, and the number of times each sample will be tested.
In this case, each sample tested is an image and its
corresponding label XML file. The train to test ratio used to
train the current model is 8:2, i.e., 20% of data was used for
evaluation. The split was done randomly by sampling 20% of
images and their corresponding labels from the master data.

B. TF Record Creation

Once the training and testing data were split, the XML
files containing the bounding box and class info for each
image were combined in a single CSV file for train and one
for test data respectively. In the CSV file, crucial fields like
image name, object name, and the coordinates of corners of
the bounding box containing that object were only retained.
Other additional information from the Pascal VOC labeling
format were discarded at this stage. To achieve maximum
efficiency in reading data, we must serialize the data such that
data read will be linear. This technique has also been proven
effective in caching data pre-processing. The TFRecord
format is a proprietary format for storing a sequence of binary
records 181,

The TFRecord is easily parsed and accessed by tensor
flow avoiding excess time required in parsing data to trainer
session if the data is stored conventionally. A TFRecord file
holds a series of records where each record is a byte-string.
The images and CSV have been used to create two
TFRecords, one for training and one for testing. Once the
TFRecords have been generated, the use of the Dataset in the
original format is no longer required unless the train test split
ratio is modified or data is added or deleted. TFRecord
creation step has to be repeated for any afore-mentioned
change.

Authorized licensed use limited to: University of Southern California. Downloaded on August 03,2024 at 20:48:08 UTC from IEEE Xplore. Restrictions apply.



C. Label-Map Creation:

Label-Map is a “.pbtxt file” which maps each class name
or object name to a non-zero integer key value. It is much
similar in the naming convention to JSON. An example of
an entry in the Label-Map file is as follows:

item {id: 1

name: "idli'}

The number of items in the Label-Map file must match
the number of classes entered in the model configuration file
of the chosen model architecture. In this case, there are 60
items in the label-map file.

D. Model Configuration

The total number of classes is 60. The coder used was a
faster RCNN box coder with 10 scaling along both x and y-
axis and scaling of 5 across both height and width. The
argmax matcher was used with a threshold of 0.5. The
number of negatives during matching was maintained to be
lower than unmatched. Each Sample will be tried to match
forcefully even if the accuracy is low. The Intersection over
Union(IOU) is the similarity measure used to evaluate the
box localization for the object. An SSD anchor generator with
6 layers, a minimum scale of 20 %, and a maximum scale of
95% with reduced boxes in the lowest layer are used to train
the model. The input image tensor is of size 300 x 300. All
images were resized to match the input tensor shape. A
convolutional box predictor was used with a kernel size 3
with RELU activation. This convolutional layer included L2
regularization.

Inception_V2 architecture was used to extract features
from the images. Batch normalization was also used to
regularize weights across images in a batch. Batch non-max
suppression was also used to boost the efficiency of the model
when fed with blind images. The training was monitored by
an RMSprop optimizer. The learning rate of the optimizer
was dynamically changed along the course of the training.
The learning rate was lowered as the epochs increased to fine-
tune the learning. An initial learning rate of 0.002 was used.
When the training was truncated upon saturation of accuracy,
the final learning rate was 0.00075. The total steps planned
for this model was 150,000. Since the variance of accuracy
was 0.001 for more than 2500 steps, the training was
truncated at 80,000 steps. The evaluation of the samples after
each epoch was done only once. All the samples in the test
data were evaluated. For monitoring purposes, 15 samples
were tested and their results were monitored using
TensorBoard. The batch size was set concerning the amount
of available VRAM. In setting up the environment, the
computing resources have been discussed in detail.

E. Training Environment

a. Hardware Environment

Deep Learning requires high computing power.
During the initial phases of this research work, online
compute engines were used to have Intel Xeon processor
and NVidia Tesla GPU. Throughout the process, as we
increase the number of data points and classes, the
handling of data in the cloud environment grew difficult.
We used Google Colaboratory in the initial stages. Later
on a high-end system with 6 core 10th Gen Intel i7
Processor, 32 Gb RAM, and 6GB NVidia Graphics with
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Compute Capability 7.5 were used to train the final
model. The final training was performed with a batch
size of 24 using the high-end system. This change had no
impact on the result of the trained model. In the second
setup, the training time was increased when comparing
to the Google Colaboratory notebook.

b.  Software Environment

Tensor Flow has an API specifically tailored to train
and deploy Object Detection models. The API requires
Tensorflow-GPU (1.15.0), NumPy (1.17.4), OpenCV
(>3.4), and pycocotools. The environment used was
Python 3.6 running anaconda with all the above-
mentioned packages installed. In addition to these
packages, the CUDA toolkit for the GPU and supported
Graphics Driver was installed to make use of GPU
resources in the training environment. The dlls required
for the TensorFlow to utilize the GPU have to be
fetchable in the python environment.

F. Model Training

The model was trained for 80000 steps and truncated
since the variance in accuracy was less than 0.001 for more
than 2000 steps before the stoppage. The configurations for
training the model were passed on to the TensorFlow API
through a configuration file to the training script of the APIL.
The above-mentioned configurations were included and
training was monitored using the TensorBoard visualization
tool. The training approximately took less than 6 hours to
complete 80000 steps for the final model. Prototyping and
fine-tuning the hyperparameters consumed more than 6 hours
daily for 3 weeks.

G. Prediction Environment

The trained model was exported to form an inference
graph and weights were dumped to a checkpoint file. This
weight was used to validate the accuracy of the model to set
up a prediction environment. The prediction was quick at the
average rate of 14 fps.

VII. RESULTS AND INFERENCE

In this research paper, both SSD MobilnetV2 and
SSD InceptionV2 were trained until the point of
convergence. The point of convergence was achieved during
training when the total loss (computed for validation data)
had a variance of less than le3 for at least 10 consecutive
epochs. The MobilenetV2 architecture converged at 60000
steps and InceptionV2 architecture at 80000 steps. The
metrics of both trials are tabulated in Table 2. mAP stands for
Mean Average Precision, 50I0U stands for Max 50 class
Intersection over Union for Bounding Box and 100I0U
stands for Max 100 _class Intersection over the union.

The current use case has 60 classes only, so the 100 IOU
depicts the IOU score for all classes in the dataset. From the
results, it is evident that InceptionV2 is having better
accuracy in comparison with MobileNetV2 Architecture for
CNN paired with SSD. The SSD used was similar in
configuration (as discussed earlier) for both MobileNetV2
and InceptionV2 architectures. Shown in Fig.2 are some of
the predictions obtained for test images using the trained
SSD_InceptionV2 model.
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Fig.2: Predictions from the Trained InceptionV2 Model
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MobilenetV2 InceptionV2
mAP 0.59 0.738
mAP(Large) 0.632 0.769
mAP(Medium) 0.308 0.575
mAP(Small) -1 0.612
5010U 0.909 0.9645
7510U 0.804 0.8627
Recall 0.524 0.792
Classification Loss 1.98 1.284
Localization Loss 0.293 0.245
Regularization Loss 0.63 0.626
Total Loss 2.903 2.15
Table 2: Result Metrics of MobileNet and Inception
Networks for SSD
CONCLUSION

The accuracy of the model expressed through metrics is
subjective to the accuracy of labeling the dataset. Using the
open-source tool, there were shortcomings in labeling
overlapping objects. Thus a clear bounding box containing
only the object was not possible in all cases.
Comprehending the predictions in blind images, the
accuracy of the prediction and localization of the bounding
box by the SSD on the Image is far more accurate than it
seems from the metrics. The class classification confidence
was above 80% for 1900 of 2000 images predicted and
above 95% for 1750 of 2000 images tested. During testing,
the number of false predictions was in the ratio of 250:1,
ie., 1 false prediction per object for 250 accurate
predictions. Comprehending that, the accuracy of the
model can be practically estimated at 97.6%.

FUTURE SCOPE FOR THIS RESEARCH WORK

We believe that this paper has the potential to be useful not

only for casual users but also in the industry lines where

precision and resource management are of the utmost
importance. Some of the ways that this paper can be further
improved are:

e Deploying a mobile application for portability and ease
of real-time operation.

e Adding a calorie counter that can predict the number
of calories present in the dish by considering the
volume.

e  Check if the dishes cooked matches the orders in a
hotel kitchen scenario and to check if all items are
present in an order (combo) in a hotel.

e Increase the number of classes dynamically (by
transfer learning) ['*,

e End of production line checker for respective
industries.

e Nutrient monitoring for different diet plans (balanced,
body buffing, etc.).

e Having a Food log consisting of orders based on their
popularity can help the hotel management plan the
restocking of raw ingredients.
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