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Abstract— Diffusion MRI tractography can be used to study 

the structural connections of the human brain. It allows us to 

quantify the shape and connectivity of white matter (WM) bundles 

(tracts) in a noninvasive way that helps us to investigate brain 

function and disease. Various protocols and techniques have been 

implemented to segment WM tractograms, but different 

acquisition protocols and processing pipelines lead to unwanted 

methodological variation in the size, shape, and densities of the 

segmented tracts. As the neuroimaging field moves towards large-

scale multi-site analyses, multi-site diffusion MRI analyses have 

largely focused on metric derived from scalar maps, such as tract-

based spatial statistics (TBSS) as opposed to using the rich 

information available in 3D tractograms. Here we propose Medial 

Tractography Analysis (MeTA)- a novel approach that extends 

current state of the art medial curve methods for bundle analysis. 

MeTA offers a medial core volume to allow for quantitative bundle 

analyses that retain key information on bundle shape, and reduce 

the influence of partial voluming in analyzing tract-wise 

microstructural properties. Compared to TBSS- a voxel-based 

approach to study the WM core- we found that the tractography-

based MeTA approach improved detection sensitivity for 

associations between Alzheimer’s disease biomarkers such as 

amyloid (Aβ) and tau load and hippocampal-cingulum DTI 

fractional anisotropy and mean diffusivity.   

I. INTRODUCTION 

Diffusion-weighted magnetic resonance imaging (dMRI) 
can be used to reveal trajectories of the brain’s white matter 
(WM) pathways. Variation in these pathways can shed light on 
numerous aspects of brain development, aging, and various 
neuropsychiatric disorders across the lifespan. To study specific 
WM connections, full brain tractograms can be segmented into 
specific WM tracts, or pathways. Many tract segmentation tools 
exist [1-7]. Once specific bundles are extracted, population 
analyses of WM tracts can be performed to understand the 
normal variations in brain connectivity and abnormal alterations 
with disease progression. 

Population-based analyses include analyses of WM 
microstructure within the bundle, along the bundle, or analyses 
of the shape of the bundle itself [3]. For example, BUndle 
ANalytics (BUAN) is a tool that, among other processes, 
parameterizes the full bundle volume for population statistics 
[8]. Similarly, CM-Rep can represent the WM tracts by a 
parametric surface and can perform manifold-based statistical 
analyses [9]. 

These methods require tracts to be aligned across 
individuals, and this mapping can often be compromised due to 
variation in WM bundle shapes and partial voluming with the 
adjacent gray matter. While these effects are often relatively 
uniform within specific studies, affecting all individuals in a 
study population, whole brain tractography and parsed bundles 
are often noisy and include many spurious streamlines. The 
quality of the tractography and bundle segmentation can also be 
highly dependent on dMRI acquisition parameters [10] and 
preprocessing steps [11]. 

The neuroimaging field is moving towards larger scale, 
multi-site studies that pool data across various institutions, 
collected at different times, and using a variety of protocols [12]. 
Compatibility of tractography bundles is needed not only within 
a specific dataset, but across datasets. To date, most multi-site 
analyses of WM have been limited to the analysis of scalar 
microstructure maps themselves, as opposed to analyses of the 
fiber bundles. 

One of the most common tools for multi-site WM analysis is 
tract-based spatial statistics (TBSS) [13]; dMRI measures from 
voxels with the highest anisotropy (tract-center) are projected 
onto a WM skeleton.  This method avoids issues such as partial 
voluming along the gray and white matter boundaries, 
minimizes issues related to misregistration across multiple 
subjects, and is a widely-used method for multi-site, multi-
cohort analyses of WM microstructure from scalar images, such 
as those conducted by large-scale consortia [14]. Even so, TBSS 
limits analyses to the WM skeleton and lacks the anatomical 
specificity and fine-scale resolution of tractography-based 
methods. 

 Here, we extend the TBSS concept of analyzing core WM 
tracts to improve consistency in multi-site studies to 
tractography. We build on CM-Reps [9] to develop Medial 
Tractography Analysis (MeTA) - a novel tool to reduce the 
microstructural heterogeneity and variability of dMRI metrics 
within bundles extracted using existing tract segmentation tools. 
Rather than simply extracting a central medial curve [15], we 
aim to provide a central volume - which enables us to extract 
bundle-level shape features on a central volume defined 
geometrically around a medial surface. We use test-retest data 
and multi-protocol data from the Alzheimer’s Disease 
Neuroimaging Initiative to show that our method: 1) works on 
bundles derived from multiple bundle segmentation schemes 
(TractSeg [3] and DSI-Studio [5]), 2) allows users to extract 
reliable bundle-wise metrics (with high test-retest reliability). 
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and 3) can detect more robust associations with clinical 
measures than TBSS, in a multi-site study. 

II. METHODS 

A. Medial Surface and Core Extraction 

For a 3D object X, a CM-Rep (m) is a continuous medial 
surface with a radius scalar field (R) on the surface [9]. The 
boundary generated of X objects is constructed using a 
maximum inscribed ball (MIB) of radius R at each point on the 

medial surface (m). Object X can be described as �± which is 
on opposite sides of the medial surface (m). �±  may be 
considered as the points of tangency between X and the MIB of 
m with radius R. 

X± = m + RU±                            (1) 

Here 	± are the unit outward normal vectors on both directions 

of X 

   U± =  −∇
R ± �1 − |∇
R|� N
                       (2) 

where ��is the unit normal of the medial surface, and ��� is 

the gradient of scalar radius R on the medial surface.   
 We then used the medial surface (m) and boundary mesh X 
to compute the central 25% of the mesh by computing the 37.5% 
and 62.5% surfaces using ray tracing methods [16]. We 
calculated the normal on the vertex points of the medial surface 
(m), and then traveling along the surface normal in both 
directions (�±) to reach the outer boundary mesh points. 

 We used a KD-Tree [17] to compute the distance from every 
vertex point in the medial surface X to its closest vertex point on 
the outer boundary mesh that lies on the normal axis in both 
directions. Finally, we calculated the shortest distance 
(thickness/depth) from the vertex point on the medial surface to 
the boundary mesh. The new computed points on both sides of 
the medial surface are used to get the sub-volume from the 
original boundary. 

 

Fig. 1. Medial surface and core extraction workflow. A. The generated 
white matter bundle from TractSeg is  B. converted to a volume of interest. C. 

Green color shows the constructed boundary object, whereas the red color 

represents the medial surface of the object. The black arrows show the distance 
between 37.5% and 62.5% surfaces, in blue, from the object's boundary. D. 

Voxelized MeTA_25% using the computed depth from medial surface using 

the ray tracing method. E. Filtered streamlines of the tracts contained in the 
MeTA 25% volume. 

B. Datasets 

We used the WU-Minn HCP [18] and Penthera3T datasets 
[19] in our test-retest analysis (Table I). dMRI images from the 
Penthera (PT) dataset were denoised using Local PCA [20], 
deGibbs [21], corrected for eddy current and motion artifacts 

(using FSL eddy [22]). The preprocessed version of the WU-
Minn HCP was downloaded. 

TABLE I.  DEMOGRAPHIC DETAILS FOR TEST-RETEST DATASETS 

 

 We used a multi-shell, multi-tissue constrained spherical 
deconvolution method [23] to extract probabilistic tractography 
(iFOD2) for the whole brain. Six major WM bundles were 
segmented from tractograms using the TractSeg tool [5]: the 
arcuate fasciculus (AF), cingulum (CG), corticospinal tract 
(CST), inferior fronto-occipital fasciculus (IFO), inferior 
longitudinal fasciculus (ILF), and uncinate fasciculus (UF). 
Within each extracted bundle, we calculated the medial surface 
using CM-Rep [9], and implemented a new method to extract 
the medial core volume, which encloses the central 25% volume, 
12.5% of the total volume from each side of the medial surface; 
we will refer to this volume as MeTA_25%. 

C. Reliability Statistics 

 We computed the median and the median absolute deviation 
(MAD) of the DTI fractional anisotropy (FA) and mean 
diffusivity (MD) measures within each of the 6 tracts. The 
intraclass correlation (ICC) was calculated using Pingouin in 
Python [24]. We assessed test-retest reliability of dMRI metrics, 
in each of the full TractSeg (‘all’, i.e., 100%), and the further 
reduced MeTA_25% (37.5-62.5) masks. We used the mean of k 
raters of ICC2 to remove the mean difference between scan 
sessions and considered the random effect [25]: 

                  ICC2 = �������

(���!("�#)���!"($������)/&'
                   (3) 

 Here, BMS is the between-targets mean square (subjects), 
EMS is the residual mean square, k is the number of judges (2 
scan sessions) rating each target, JMS is the between-judges 
(scan sessions) mean square, and n' is the number of targets 
(subjects). We quantified the DTI microstructural variation in 
each tract between subjects using the median absolute deviation 
(MAD) for one scan session and performed t-tests between all 
vs MeTA_25% masks for each tract. 

D. Clinical application 

 The greatest WM microstructural differences between 
individuals with dementia and cognitively unimpaired controls 
(CN) have previously been reported in the parahippocampal 
cingulum [26]. To demonstrate flexibility in our approach across 
bundle segmentation algorithms, we segmented the 
parahippocampal cingulum (C_PH) using DSI-Studio [3] from 
the ADNI3 dMRI data, which was collected with seven different 
protocols. We then extracted MeTA_25% and compared median 
DTI FA and MD diffusion metrics between mild cognitive 
impairment (MCI) and CN ADNI3 participants (Table II), using 
linear mixed-effects models adjusting for age, sex, and scan site 
as a random variable. We investigated differences associated 
with the Montreal Cognitive Assessment (MoCA), Mini-Mental 
State Examination (MMSE), and Clinical Dementia Rating 
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Scale Sum of Boxes (CDR-SB), as well as amyloid (Aβ) and tau 
load indexed with FBB/FBP or AV-1451 positron emission 
tomography, respectively. Cortical Aβ and temporal tau SUVRs 
were binarized using cut-points defined in [27]. 

TABLE II.  DEMOGRAPHIC AND CLINICAL MEASURES FOR PARTICIPANTS 

IN THE ADNI3 DATASET, SPLIT BY DMRI PROTOCOL 

 

III. RESULTS 

A. Diffusion microstructure reliability 

Overall, intraclass correlation of FA and MD for both the 
Penthera and HCP datasets were moderate to highly reliable 
across all tracts for both the full bundle (‘all’) and the 
MeTA_25%. We note slight improvements in ICC with the 
MeTA_25% in most cases where the full bundle (‘all’) was less 
reliable (ICC < 0.75), but this was not significant due to the 
overall high reliability. The reliability across all tracts of the 
Penthera dataset was high (average ICCk=0.939 ± 0.037), 
regardless of method. 

TABLE III.  FA AND MD ICC2K TEST-RETEST ESTIMATES ACROSS 6 

LATERALIZED TRACTS FOR ALL AND META_25% ON HCP AND PT DATASETS. 

 

B. Subjects’ variation across scan sessions 

The overall median value of all tracts is plotted in Figure 2. 
In the HCP, we found significant differences in FA MAD 
between the MeTA_25% core mask and “all” mask in AF, CG, 
CST, IFO, and UF, bilaterally. Similarly, in the Penthera dataset, 
we found significant differences in the AF_L, CG_L, CG_R, 
CST_L, and CST_R. We also found a significant MD difference 

between MeTA_25% and “all”  in  CST_L, CST_R, IFO_R. 
Similar trends were detected in Penthera (Figure 2). 

Fig. 2. Within subject variation of diffusion microstructure metrics for HCP 

and PT datasets. The cyan color represents measures extracted from the full 
TractSeg bundle mask (‘all’), while the red represents measures within the 

MeTA mask (25%). 

C. Protocol effects on dMRI metrics in ADNI 

As shown in Figure 3, across ADNI protocols, while TBSS 
had the lowest FA and MD residual variation, compared to the 
whole tract (‘all’), MeTA_25% had lower residual variation.  

 

Fig. 3. TBSS, MeTA, and whole tract (‘all’) MD and FAresiduals in the left 
and right parahippocampal cingulum for each ADNI3 protocol, after adjusting 

for age and sex. 
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D. ADNI association 

 As shown in Table IV, the MeTA_25% C_PH DTI measures 
were more strongly associated with both cognitive assessments 
as well as Aβ and tau pathology compared to TBSS, highlighting 
that the additional variability observed in Figure 3 was 
biologically meaningful. In fact, amyloid associations were only 
detectable with MeTA. 

TABLE IV.  USING META, DTI MEASURES IN THE LEFT AND RIGHT 

PARAHIPPOCAMPAL CINGULUM WERE SIGNIFICANTLY DIFFERENT BETWEEN 

GROUPS OF INDIVIDUALS WITH A) MCI VS CN, B) PET-DEFINED BETA AMYLOID 

POSITIVITY VS. NOT, OR C) PET-DEFINED TAU POSITIVITY VS. NOT, AND 

ASSOCIATED WITH CDR-SB, MOCA, AND MMSE 

 
 

IV. DISCUSSION 

 We extended the CM-Rep approach to develop MeTA,  
which reduces the microstructural heterogeneity and variability 
within the bundle. We found higher FA and MD ICC values with 
MeTA_25% masks in test-retest datasets compared to the whole 
tract(‘all’). While the variance in DTI measures was greater in 
MeTA tracts than in the TBSS ROIs, we found stronger MeTA 
associations with AD-related clinical and pathological measures 
in multi-site, multi-protocol ADNI3 dMRI data. This suggests 
that bundle analyses based on MeTA may help to identify more 
subtle effects that may be underestimated or even missed using 
a WM skeleton based on voxel-wise FA. The MeTA approach 
also focuses on sets of streamlines that have more homogeneous 
microstructure than the full bundle (‘all’), as we showed, with 
lower variability. Future work will include parameterization of 
the core bundles for along-tract statistical analyses. 
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