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Abstract— Diffusion MRI tractography can be used to study
the structural connections of the human brain. It allows us to
quantify the shape and connectivity of white matter (WM) bundles
(tracts) in a noninvasive way that helps us to investigate brain
function and disease. Various protocols and techniques have been
implemented to segment WM tractograms, but different
acquisition protocols and processing pipelines lead to unwanted
methodological variation in the size, shape, and densities of the
segmented tracts. As the neuroimaging field moves towards large-
scale multi-site analyses, multi-site diffusion MRI analyses have
largely focused on metric derived from scalar maps, such as tract-
based spatial statistics (TBSS) as opposed to using the rich
information available in 3D tractograms. Here we propose Medial
Tractography Analysis (MeTA)- a novel approach that extends
current state of the art medial curve methods for bundle analysis.
MeTA offers a medial core volume to allow for quantitative bundle
analyses that retain key information on bundle shape, and reduce
the influence of partial voluming in analyzing tract-wise
microstructural properties. Compared to TBSS- a voxel-based
approach to study the WM core- we found that the tractography-
based MeTA approach improved detection sensitivity for
associations between Alzheimer’s disease biomarkers such as
amyloid (AP) and tau load and hippocampal-cingulum DTI
fractional anisotropy and mean diffusivity.

I. INTRODUCTION

Diffusion-weighted magnetic resonance imaging (dMRI)
can be used to reveal trajectories of the brain’s white matter
(WM) pathways. Variation in these pathways can shed light on
numerous aspects of brain development, aging, and various
neuropsychiatric disorders across the lifespan. To study specific
WM connections, full brain tractograms can be segmented into
specific WM tracts, or pathways. Many tract segmentation tools
exist [1-7]. Once specific bundles are extracted, population
analyses of WM tracts can be performed to understand the
normal variations in brain connectivity and abnormal alterations
with disease progression.

Population-based analyses include analyses of WM
microstructure within the bundle, along the bundle, or analyses
of the shape of the bundle itself [3]. For example, BUndle
ANalytics (BUAN) is a tool that, among other processes,
parameterizes the full bundle volume for population statistics
[8]. Similarly, CM-Rep can represent the WM tracts by a
parametric surface and can perform manifold-based statistical
analyses [9].
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These methods require tracts to be aligned across
individuals, and this mapping can often be compromised due to
variation in WM bundle shapes and partial voluming with the
adjacent gray matter. While these effects are often relatively
uniform within specific studies, affecting all individuals in a
study population, whole brain tractography and parsed bundles
are often noisy and include many spurious streamlines. The
quality of the tractography and bundle segmentation can also be
highly dependent on dMRI acquisition parameters [10] and
preprocessing steps [11].

The neuroimaging field is moving towards larger scale,
multi-site studies that pool data across various institutions,
collected at different times, and using a variety of protocols [12].
Compatibility of tractography bundles is needed not only within
a specific dataset, but across datasets. To date, most multi-site
analyses of WM have been limited to the analysis of scalar
microstructure maps themselves, as opposed to analyses of the
fiber bundles.

One of the most common tools for multi-site WM analysis is
tract-based spatial statistics (TBSS) [13]; dMRI measures from
voxels with the highest anisotropy (tract-center) are projected
onto a WM skeleton. This method avoids issues such as partial
voluming along the gray and white matter boundaries,
minimizes issues related to misregistration across multiple
subjects, and is a widely-used method for multi-site, multi-
cohort analyses of WM microstructure from scalar images, such
as those conducted by large-scale consortia [14]. Even so, TBSS
limits analyses to the WM skeleton and lacks the anatomical
specificity and fine-scale resolution of tractography-based
methods.

Here, we extend the TBSS concept of analyzing core WM
tracts to improve consistency in multi-site studies to
tractography. We build on CM-Reps [9] to develop Medial
Tractography Analysis (MeTA) - a novel tool to reduce the
microstructural heterogeneity and variability of dMRI metrics
within bundles extracted using existing tract segmentation tools.
Rather than simply extracting a central medial curve [15], we
aim to provide a central volume - which enables us to extract
bundle-level shape features on a central volume defined
geometrically around a medial surface. We use test-retest data
and multi-protocol data from the Alzheimer’s Disease
Neuroimaging Initiative to show that our method: 1) works on
bundles derived from multiple bundle segmentation schemes
(TractSeg [3] and DSI-Studio [5]), 2) allows users to extract
reliable bundle-wise metrics (with high test-retest reliability).
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and 3) can detect more robust associations with clinical
measures than TBSS, in a multi-site study.

II. METHODS

A. Medial Surface and Core Extraction

For a 3D object X, a CM-Rep (m) is a continuous medial
surface with a radius scalar field (R) on the surface [9]. The
boundary generated of X objects is constructed using a
maximum inscribed ball (MIB) of radius R at each point on the
medial surface (m). Object X can be described as X* which is
on opposite sides of the medial surface (m). X* may be
considered as the points of tangency between X and the MIB of
m with radius R.

X* =m + RU* 1)
Here U* are the unit outward normal vectors on both directions
of X
Uf= -V,R+.1—|V,R2N, 2)
where N,,is the unit normal of the medial surface, and V,,,R is
the gradient of scalar radius R on the medial surface.
We then used the medial surface (m) and boundary mesh X
to compute the central 25% of the mesh by computing the 37.5%
and 62.5% surfaces using ray tracing methods [16]. We
calculated the normal on the vertex points of the medial surface
(m), and then traveling along the surface normal in both
directions (X*) to reach the outer boundary mesh points.

We used a KD-Tree [17] to compute the distance from every
vertex point in the medial surface X to its closest vertex point on
the outer boundary mesh that lies on the normal axis in both
directions. Finally, we calculated the shortest distance
(thickness/depth) from the vertex point on the medial surface to
the boundary mesh. The new computed points on both sides of
the medial surface are used to get the sub-volume from the
original boundary.

Filtered tract on
MeTA 25%

Convert
tract to ROI

Fig. 1. Medial surface and core extraction workflow. A. The generated
white matter bundle from TractSeg is B. converted to a volume of interest. C.
Green color shows the constructed boundary object, whereas the red color
represents the medial surface of the object. The black arrows show the distance
between 37.5% and 62.5% surfaces, in blue, from the object's boundary. D.
Voxelized MeTA_25% using the computed depth from medial surface using
the ray tracing method. E. Filtered streamlines of the tracts contained in the
MeTA 25% volume.

B. Datasets

We used the WU-Minn HCP [18] and Penthera3T datasets
[19] in our test-retest analysis (Table I). dMRI images from the
Penthera (PT) dataset were denoised using Local PCA [20],
deGibbs [21], corrected for eddy current and motion artifacts

(using FSL eddy [22]). The preprocessed version of the WU-
Minn HCP was downloaded.

TABLE L. DEMOGRAPHIC DETAILS FOR TEST-RETEST DATASETS
Age Voxel size b-value
Dataset range N (F) (mm)? N(Volume) (mm?Ys)
1.25x1.25.1 1000,2000,
HCP 22-35 32 (23) 25 90,90,90 3000
Penthera 24-30 11(3) 2x2x2 8,32,60 302300(? 0,

We used a multi-shell, multi-tissue constrained spherical
deconvolution method [23] to extract probabilistic tractography
(iIFOD2) for the whole brain. Six major WM bundles were
segmented from tractograms using the TractSeg tool [5]: the
arcuate fasciculus (AF), cingulum (CQG), corticospinal tract
(CST), inferior fronto-occipital fasciculus (IFO), inferior
longitudinal fasciculus (ILF), and uncinate fasciculus (UF).
Within each extracted bundle, we calculated the medial surface
using CM-Rep [9], and implemented a new method to extract
the medial core volume, which encloses the central 25% volume,
12.5% of the total volume from each side of the medial surface;
we will refer to this volume as MeTA_25%.

C. Reliability Statistics

We computed the median and the median absolute deviation
(MAD) of the DTI fractional anisotropy (FA) and mean
diffusivity (MD) measures within each of the 6 tracts. The
intraclass correlation (ICC) was calculated using Pingouin in
Python [24]. We assessed test-retest reliability of dMRI metrics,
in each of the full TractSeg (‘all’, i.e., 100%), and the further
reduced MeTA 25% (37.5-62.5) masks. We used the mean of k
raters of ICC2 to remove the mean difference between scan
sessions and considered the random effect [25]:

BMS—-EMS
Icc2 = (BMS+(k—1)EMS+k(JMS—EMS)/n/ G)

Here, BMS is the between-targets mean square (subjects),
EMS is the residual mean square, k is the number of judges (2
scan sessions) rating each target, JMS is the between-judges
(scan sessions) mean square, and n' is the number of targets
(subjects). We quantified the DTI microstructural variation in
each tract between subjects using the median absolute deviation
(MAD) for one scan session and performed #-tests between all
vs MeTA_25% masks for each tract.

D. Clinical application

The greatest WM microstructural differences between
individuals with dementia and cognitively unimpaired controls
(CN) have previously been reported in the parahippocampal
cingulum [26]. To demonstrate flexibility in our approach across
bundle segmentation algorithms, we segmented the
parahippocampal cingulum (C_PH) using DSI-Studio [3] from
the ADNI3 dMRI data, which was collected with seven different
protocols. We then extracted MeTA 25% and compared median
DTI FA and MD diffusion metrics between mild cognitive
impairment (MCI) and CN ADNI3 participants (Table II), using
linear mixed-effects models adjusting for age, sex, and scan site
as a random variable. We investigated differences associated
with the Montreal Cognitive Assessment (MoCA), Mini-Mental
State Examination (MMSE), and Clinical Dementia Rating
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Scale Sum of Boxes (CDR-SB), as well as amyloid (Af) and tau
load indexed with FBB/FBP or AV-1451 positron emission
tomography, respectively. Cortical A and temporal tau SUVRs
were binarized using cut-points defined in [27].

TABLE II. DEMOGRAPHIC AND CLINICAL MEASURES FOR PARTICIPANTS
IN THE ADNI3 DATASET, SPLIT BY DMRI PROTOCOL
Protocols| N (‘;f:) N (Female)| CN (MCI)| AB (AB*) | taw ( tau®)
P33 | 56 | 75.747.7 2 37(14) | 1920 | 26011
P36 | 46 | 73.146.9 2 2023) | 24015 | 22015
$31 | 96 | 72485 57 5927) | 4928 | s6(1)
$55 | 260 | 74478 | 143 169 (68) | 103 (116) | 135 (66)
$127 | 109 | 73.8+7.6 57 66(35) | 55(36) | 66(20)
GE36 | 41 7224722 17 21(16) | 20014) | 2509
GE54 | 106 | 7624811 52 65(26) | 50(42) | 62(23)
Total | 714 | 742+7.9 | 370 | 437(209) | 320 272) | 392 (165)

III. RESULTS

A. Diffusion microstructure reliability

Overall, intraclass correlation of FA and MD for both the
Penthera and HCP datasets were moderate to highly reliable
across all tracts for both the full bundle (‘all’) and the
MeTA 25%. We note slight improvements in ICC with the
MeTA_25% in most cases where the full bundle (‘all’) was less
reliable (ICC < 0.75), but this was not significant due to the
overall high reliability. The reliability across all tracts of the
Penthera dataset was high (average ICCk=0.939 + 0.037),
regardless of method.

TABLE III. FA AND MD ICC2K TEST-RETEST ESTIMATES ACROSS 6
LATERALIZED TRACTS FOR ALL AND META_25% ON HCP AND PT DATASETS.

HCP PT

AT L
AT R
CG L
CG_R

CST L

CST_R

Tracts

IFO_L
IFO_R
ILF_L - 0.84

ILF_R

UF R

all
25%
all
25%

B. Subjects’ variation across scan sessions

The overall median value of all tracts is plotted in Figure 2.
In the HCP, we found significant differences in FA MAD
between the MeTA 25% core mask and “all” mask in AF, CG,
CST, IFO, and UF, bilaterally. Similarly, in the Penthera dataset,
we found significant differences in the AF L, CG L, CG R,
CST_L, and CST_R. We also found a significant MD difference

between MeTA 25% and “all” in CST L, CST R, IFO _R.
Similar trends were detected in Penthera (Figure 2).
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Fig. 2. Within subject variation of diffusion microstructure metrics for HCP
and PT datasets. The cyan color represents measures extracted from the full
TractSeg bundle mask (‘all’), while the red represents measures within the
MeTA mask (25%).

C. Protocol effects on dMRI metrics in ADNI

As shown in Figure 3, across ADNI protocols, while TBSS
had the lowest FA and MD residual variation, compared to the
whole tract (‘all”), MeTA_25% had lower residual variation.
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Fig. 3. TBSS, MeTA, and whole tract (‘all’) MD and FAresiduals in the left
and right parahippocampal cingulum for each ADNI3 protocol, after adjusting
for age and sex.
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D. ADNI association

As shown in Table IV, the MeTA 25% C_PH DTI measures
were more strongly associated with both cognitive assessments
as well as AP and tau pathology compared to TBSS, highlighting
that the additional variability observed in Figure 3 was
biologically meaningful. In fact, amyloid associations were only
detectable with MeTA.

TABLE IV. USING META, DTI MEASURES IN THE LEFT AND RIGHT
PARAHIPPOCAMPAL CINGULUM WERE SIGNIFICANTLY DIFFERENT BETWEEN
GROUPS OF INDIVIDUALS WITH A) MCI VS CN, B) PET-DEFINED BETA AMYLOID
POSITIVITY VS. NOT, OR C) PET-DEFINED TAU POSITIVITY VS. NOT, AND
ASSOCIATED WITH CDR-SB, MOCA, AND MMSE

FA MD
C_PH Group Tool
r p r p
CN vs MeTA | -0.15 1.92x10™ 0.24 5.56x10”
MCI TBSS -0.13 1.21x10° 0.14 7.14x10*
AP vs MeTA | -0.07 0.12 0.15 5.79x10*
Ap* TBSS -0.08 0.068 0.10 0.025

TAU-vs | MeTA | -0.16 | 4.99x10* 0.29 3.24x10™"
L TAU+ TBSS -0.21 1.36x10°¢ 0.22 2.29x107
MeTA | -0.29 | 7.32x10™* [ 0.50 [ 2.14x10*

CDRSB
TBSS -0.32 | 5.67x10"7 | 0.32 1.9x10¢
MeTA 0.18 2.02x10-° | -042 | 1.11x107%

MoCA
TBSS 0.23 2.65x10* | -0.26 | 1.19x10™"
MeTA 0.23 1.81x10° | -0.45 1.5x10
MMSE -
TBSS 0.26 3.5x10™ -0.28 | 1.14x10™"
CN vs MeTA | -0.13 1.38x107 0.19 4.19x10°
MCI TBSS -0.07 0.08 0.14 6.42x10"
AP vs MeTA | -0.10 0.017 0.16 1.61x10™

Ap* TBSS -0.14 1.03x10° 0.09 0.036

TAU-vs | MeTA | -0.22 1.06x10° 0.31 1.59x10™"
R TAU+ TBSS -0.21 1.51x10° 0.23 2.74x107
MeTA | -0.29 | 1.63x10"° [ 0.47 2.0x107

CDRSB
TBSS -0.28 | 4.36x10"° | 0.28 7.16x10"
MeTA 0.24 7.55x10° | -0.40 | 6.85x10%

MoCA
TBSS 0.23 2.44x10* | -0.23 | 2.06x10*
MeTA 0.26 | 3.69x10"" | -0.43 8.3x10%°

MMSE
TBSS 0.25 1.36x10" | -0.26 | 1.33x10™"

IV. DISCUSSION

We extended the CM-Rep approach to develop MeTA,
which reduces the microstructural heterogeneity and variability
within the bundle. We found higher FA and MD ICC values with
MeTA_25% masks in test-retest datasets compared to the whole
tract(‘all”). While the variance in DTI measures was greater in
MeTA tracts than in the TBSS ROIs, we found stronger MeTA
associations with AD-related clinical and pathological measures
in multi-site, multi-protocol ADNI3 dMRI data. This suggests
that bundle analyses based on MeTA may help to identify more
subtle effects that may be underestimated or even missed using
a WM skeleton based on voxel-wise FA. The MeTA approach
also focuses on sets of streamlines that have more homogeneous
microstructure than the full bundle (‘all’), as we showed, with
lower variability. Future work will include parameterization of
the core bundles for along-tract statistical analyses.
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